
Bridging Specification and Implementation in1

Smart Contract Languages2

Cas van der Rest # �3

IOHK, The Netherlands http://www.casvanderrest.nl/4

Abstract5

Before entrusting a smart contract with our funds or data, it is essential to fully understand its terms.6

A formal specification of the smart contract language’s semantics is crucial for expressing these terms7

unambiguously. However, before a specification can serve as a reliable tool for assessing a contract’s8

behavior, we must first establish a strong connection between the specification and implementation, a9

task that is further complicated by the rapid evolution of smart contract languages and the common10

prioritization of implementation over formal specification during (early) development.11

In this paper, we propose a strategy to prevent divergence between implementation and specific-12

ation by transpiling Nanopass intermediate representations (IRs) into mutually defined families of13

inductive data types in Agda. We enforce completeness of typing relations using Agda’s dependent14

type system and meta-programming capabilities. A key outcome of our approach is that any meaning-15

ful syntactic change—such as the addition or removal of production rules or non-terminals—results16

in a compile-time error in the specification. Although our approach was developed in the context of17

Compact—the smart contract language of the Midnight blockchain—we believe that it may serve18

as a general template for synchronization between Agda-based specifications and smart contract19

language implementations.20

2012 ACM Subject Classification Replace ccsdesc macro with valid one21

Keywords and phrases Dummy keyword22

Digital Object Identifier 10.4230/OASIcs.CVIT.2016.2323

Acknowledgements I want to thank . . .24

1 Introduction25

Smart contracts potentially handle large amounts of funds, and as such it is crucial precisely26

understand its terms, as well as trust that a system will faithfully execute these terms.27

Failing to understand the terms of a smart contract may lead to substantial financial losses,28

as exemplified by the infamous exploit of the TheDAO contract [8] in 2016. Subtleties around29

the expression of control flow in Solidity smart contracts allowed hackers to launch a reentry30

attack and capture the equivalent of $50 in Ether, resulting in hard fork of the Ethereum31

blockchain to recover the stolen funds.32

This exploit perfectly illustrates the need to be able to unambiguously express the terms33

of a smart contract. A formal mathematical specification of the smart contract language vital34

for expressing a contract’s intended semantics. However, the utility of formal specifications35

in assessing a contract’s validity hinges on whether it faithfully reflects how smart contracts36

are executed by the implementation of a system. This problem of how to bridge the gap37

between specification and implementation is an age-old question in the field of programming38

languages, resulting in many different approaches to tackle the problem, ranging from fully-39

verified compilers [4, 5] to more light-weight approaches such as certifying compilation [6] or40

conformance testing.41

While previous work offers us a plethora of techniques for connecting specification and42

implementation, additional challenges arise when they are applied outside the context of43

academic research. Typically, smart contract languages are developed in an environment44

© Cas van der Rest;
licensed under Creative Commons License CC-BY 4.0

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:7

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cas.vanderrest@shielded.io
https://orcid.org/0000-0002-0059-5353
http://www.casvanderrest.nl/
https://doi.org/10.4230/OASIcs.CVIT.2016.23
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/oasics/
https://www.dagstuhl.de

23:2 Bridging Specification and Implementation in Smart Contract Languages

that is characterized by rapid evolution of the language’s design as well as prioritization of45

implementation over the development of (formal) specifications. This presents a dilemma: do46

we develop the specification with the language, embracing the additional maintenance costs47

incurred by an evolving design, or do we wait for the language’s design and implementation48

to stabilize. Although waiting appears tempting, it is important to highlight that there49

are downsides too. That is, we lose potential some synergy between specification and50

implementation, where by forcing ourselves to express mathematically what (we think) we51

are doing, we may uncover flaws in our thinking and design. This allows a specification to52

inform the design of the very language it is specifying. It becomes much harder to backtrack53

on mistakes when strictly sequencing the development of a language’s implementation and54

specification.55

Clearly, the ideal scenario would be to develop a specification in conjunction with an56

implementation, while maintaining a strong connection between the two. However, if we57

require implementation and specification to be connected through formal proofs, e.g., by58

having a verified compiler, this becomes entirely infeasible for almost all projects due to the59

tremendous amount of resources required. This begs the question of whether we can settle60

for a more light-weight approach where we develop the implementation and specification61

simultaneously but separately, connecting them in a way that prevents divergence in the62

presence of design changes but does not impede the development process by requiring proofs63

to be written before code reaches production.64

In this paper, we present such a light-weight strategy for bridging the specification and65

implementation of smart contract languages. In short, our approach works by transpiling66

the syntax definition of Nanopass [3] intermediate representations (IRs) to mutually-defined67

families of inductive data types in Agda [7], leveraging its dependent type system and meta-68

programming capabilities to enforce completeness of typing rules defined over the transpiled69

syntax. This approach has two important benefits. First, it guards against divergence of the70

specification and implementation, by using the compiler’s internal syntax definition as the71

source of truth for the languages abstract syntax. This ensures that any meaningful syntactic72

change to the languages abstract syntax—in the form of adding, removing or changing73

production rules or non-terminals—manifests as a compile time error when type checking74

the specification. As a result, we can fully automatically check whether the specification and75

implementation are synchronized. The second important benefit of our approach is that it76

does not impact the compiler development cycle in any way. By repurposing the definition77

of Nanopass IRs as a DSL for specifying the language’s abstract syntax, we integrate the78

specification and implementation in a way that neither induces any additional overhead in79

the compiler nor does it induce additional maintenance work for compiler developers.80

More concretely, this paper is structured as follows:81

In Section 2, we illustrate, by example, how one would define and formally specify a82

smart contract language using our approach.83

In Section 3, we present an approach for leveraging Agda’s dependent type system and84

meta-programming capabilities to statically enforce completeness of typing relations85

defined over the transpiled syntax.86

Finally, we conclude and discuss future work in Section 4.87

1.1 Industrial Application88

The techniques in this paper have been developed and applied in the context Compact [1],89

the smart contract language of the Midnight blockchain [2]. In that context, we successfully90

Cas van der Rest 23:3

(define-language Lstlc -- Declares the name of the language
(terminals -- Declares the terminals of the language

(string (name))
(number (nat)))

(Type (type) -- Declares "Type" and its meta-variable
(tbool)
(tnat)
(tfun type1 type2))

(Expr (expr) -- Declares "Expr" and its meta-variable
(evar name)
(etrue)
(efalse)
(elit nat)
(eif expr1 expr2 expr3)
(elam name expr1)
(eapp expr1 expr2)
(eadd expr1 expr2)))

Figure 1 Nanopass IR definition for a Simply-Typed λ-calculus

applied the techniques described in this paper to develop an Agda specification of Compact’s91

static semantics next to its Nanopass implementation. While Compact is not a particularly92

large language, its abstract syntax still contains in the order of 100 production rules spanning93

several tens of non-terminals. By extension, the formal specification of its type system94

contains an equal number of typing rules respectively judgments. Using the techniques95

described in this paper, we managed to keep this formal specification from diverging from96

its implementation, despite the rapid pace at which the language is currently evolving. We97

choose to present them here in a more general setting to illustrate their potential application98

outside the context in which they were initially developed.99

2 Integrating Specification and Implementation, by Example100

In this section we demonstrate the process for defining, transpiling, and specifying a language101

definition. For this purpose, we show, as a three-step process, how to formally specify the102

static semantics of a simply-typed λ-calculus.103

2.1 Step 1: Declare Abstract Syntax of the Target Language as a104

Nanopass IR105

We start by declaring the abstract syntax of our language as a Nanopass IR. This definition of106

the abstract syntax is regarded as the source of truth, and is used both by the implementation107

and specification. Figure 1 shows the definition of a Nanopass IR for a simply typed λ-108

calculus. Along with some metadata defining the name of the IR (Lstlc), it declares two109

non-terminals: Type, defining the syntax of types, and Expr, defining the abstract syntax110

of terms. For each non-terminal, we must also declare a meta-variable (respectively type111

and expr for types and terms of the language), which are used to refer to their associated112

non-terminal. Meta-variables also play a crucial role in transpilation; when converting the113

untyped Nanopass IR to a typed Agda definition, the required type information is recoverd114

by resolving these meta-variables.115

CVIT 2016

23:4 Bridging Specification and Implementation in Smart Contract Languages

mutual
data Expr : Set where

evar : String → Expr
etrue : Expr
efalse : Expr
enum : N → Expr
eif : Expr → Expr → Expr → Expr
elam : String → Expr → Expr
eapp : Expr → Expr → Expr
eadd : Expr → Expr → Expr

variable
expr expr1 expr2 expr3 expr’ : Expr

data Type : Set where
tbool : Type
tnat : Type
tfun : Type → Type → Type

variable
type type1 type2 type3 type’ : Type

Figure 2 Transpiled Agda definition of the Nanopass IR definition shown in Figure 1.

2.2 Step 2: Transpilation of Abstract Syntax to Agda116

The next step is to transpile the Nanopass IR defined in Figure 1 to Agda. This generates117

a mutually-defined family of inductive data types. Figure 2 shows the generated Agda118

definition. Each non-terminal in the abstract syntax corresponds to a data type, and each119

production rule to a constructor. To make sure that the generated type signatues are accepted120

by Agda, we must resolve meta-variables referring to both terminals and non-terminals. For121

example, we transpile the production rule for λ-abstraction as follows:122

(elam name expr1) 7→ elam : String → Expr → Expr123

Here, to ensure that the generated type signature is accepted by Agda, we must resolve the124

meta-variable expr1 to the Expr data type, and the meta-variable name to the String type.125

In addition to a mutually-defined family of inductive types, transpilation also generates126

several generalized variables for each data type, indicated by variable. These serve a similar127

purpose to meta-variables in the Nanopass IR, in that they are used to refer to universally-128

quantified values of their corresponding types.129

2.3 Step 3: Define Typing Rules as an Inductive Relation over Abstract130

Syntax131

Now that the abstract syntax of the target language is available in Agda, we can define the132

type system. Typically, one does this in Agda by declaring an inductive relation over terms133

(or, term-indexed data type), whose constructors the typing rules, i.e., the different ways in134

Cas van der Rest 23:5

⊢-evar : name 7→ type ∈ Γ

−−−−−−−−−−−−
Γ ⊢ evar name : type

⊢eif : Γ ⊢ expr1 : tbool
→ Γ ⊢ expr2 : type
→ Γ ⊢ expr3 : type

−−−−−−−−−−−−−−−−−−−
Γ ⊢ eif expr1 expr2 expr3 : type

⊢eapp : Γ ⊢ expr1 : tfun type1 type2

→ Γ ⊢ expr2 : type1

−−−−−−−−−−−−−−−−−
Γ ⊢ eapp expr1 expr2 : type2

Figure 3 Excerpt of the typing rules for the simply typed λ-calculus defined in Figures 1 and 2,
defined as constructors of an inductive relation over context, term, and type.

which a proof of well-typedness can be constructed. Generally, this relation has additional135

positions for tracking type information and contextual information. In this case, we use a136

three-place relation over context, terms, and types:137

data _⊢_ : _ (Γ : Context) : Expr → Type → Set where

Figure 3 shows an excerpt of the definition of the static semantics for the target lan-138

guage, by declaring constructors corresponding to the typing rules for variables, if-then-else139

expressions, and function application.140

3 Ensuring Completeness of Typing Relations141

Right now, a compile-time error will be triggered in the following cases:142

a non-terminal is removed,143

a production rule is removed, or144

a production rule is changed.145

In summary, by defining our formal specification on top of the transpiled syntax, we are146

guaranteed that our specification can only refer to syntactic elements that are part of the147

compiler’s internal definition. What is explicitly not guaranteed is that the specification is a148

complete one. That is, the following changes to the language will not trigger a compile-time149

error:150

a non-terminal is added, or151

a production rule is added.152

More likely than not, such syntactic changes signify the addition of a new feature to153

the language, for which we should also extend the formal specification. To ensure that154

the addition of new syntax to the language triggers a compile-time error, we must perform155

CVIT 2016

23:6 Bridging Specification and Implementation in Smart Contract Languages

additional checks on the Agda side. Specifically, we must (1) declare which data types make156

up the language, (2) check that we have a corresponding typing relation for each data type157

in the language’s syntax, and (3) check that for every constructor there is a corresponding158

typing rule in the associated typing relation.159

For (1), the transpilation tool generates an additional definition that collects the non-160

terminals of the language together with their meta-variables:161

Lstlc : List (Set × String)
Lstlc = (Expr , "expr") :: (Type , "type") :: []

To ensure that each non-terminal has an associated typing relation, we declare an instance162

of the HasTyping for the Lstlc language. This instance contains a proof witnessing that every163

non-terminal of the language has an associated typing relation in the form of a three-place164

relation over context, terms, and types.165

Typing S = ∃2 λ (CTX : Set) (I : CTX → Set) → (ctx : CTX) → S → I ctx → Set
record HasTyping (syn : List (Set × String)) : Set1 where

field rels : All (Typing ◦ proj1) syn

As a result, by defining an instance of the form HasTyping Lstlc, we are forced to declare a166

typing relation for each non-terminal. Furthermore, whenever a new non-terminal is added in167

the Nanopass IR, after transpilation of the updated syntax, this instance becomes ill-typed,168

and we are must declare a new typing relation for the newly added non-terminal.169

Finally, we use Agda’s meta-programming capabilities to check that the declared typing170

relations cover every production rule of the syntax. In short, this check is performed by171

asserting that for every constructor in the untyped syntax, there is a constructor of the172

corresponding typing relation that has that constructor in the term position (i.e., S in the173

definition of Typing). We invoke this check for Lstlc as follows:174

unquoteDecl = checkRels (getTyping Lstlc) []175

If the typing rules shown in Figure 2 were the only rules we defined, invoking the meta-176

program above would result in the following type error when checking the specification,177

indicating which relations are missing which typing rules.178

Discovered missing rule(s) while checking coverage of relation _⊢_ : _179

---> No typing rule found for constructor etrue180

---> No typing rule found for constructor efalse181

---> No typing rule found for constructor enum182

---> No typing rule found for constructor elam183

---> No typing rule found for constructor eadd184

4 Conclusion and Future Work185

In this paper, we presented an approach for connecting the specification and implementation186

of smart contract languages through the transpilation of Nanopass IRs. While our approach187

was developed and applied in the context of the Compact language, its principles and188

methodology are generalizable to other (smart contract) languages.189

For future work, we aim to further enhance the accessibility and applicability of our190

approach by making our tools publicly available as open-source projects, and leveraging our191

extraction mechanism to enable further compiler verification. For example, we could explore192

certification [6] techniques to formally verify compiler correctness.193

Cas van der Rest 23:7

References194

1 URL: https://docs.midnight.network/develop/reference/compact/.195

2 URL: https://midnight.network/.196

3 Andrew W. Keep and R. Kent Dybvig. A nanopass framework for commercial compiler197

development. In Greg Morrisett and Tarmo Uustalu, editors, ACM SIGPLAN International198

Conference on Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27,199

2013, pages 343–350. ACM, 2013. doi:10.1145/2500365.2500618.200

4 Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. Cakeml: a verified201

implementation of ML. In Suresh Jagannathan and Peter Sewell, editors, The 41st Annual202

ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14,203

San Diego, CA, USA, January 20-21, 2014, pages 179–192. ACM, 2014. doi:10.1145/2535838.204

2535841.205

5 Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and206

Christian Ferdinand. Compcert-a formally verified optimizing compiler. In ERTS 2016:207

Embedded Real Time Software and Systems, 8th European Congress, 2016.208

6 George C. Necula and Peter Lee. The design and implementation of a certifying compiler.209

In Jack W. Davidson, Keith D. Cooper, and A. Michael Berman, editors, Proceedings of210

the ACM SIGPLAN ’98 Conference on Programming Language Design and Implementation211

(PLDI), Montreal, Canada, June 17-19, 1998, pages 333–344. ACM, 1998. doi:10.1145/212

277650.277752.213

7 Ulf Norell. Dependently typed programming in agda. In Pieter W. M. Koopman,214

Rinus Plasmeijer, and S. Doaitse Swierstra, editors, Advanced Functional Programming,215

6th International School, AFP 2008, Heijen, The Netherlands, May 2008, Revised Lec-216

tures, volume 5832 of Lecture Notes in Computer Science, pages 230–266. Springer, 2008.217

doi:10.1007/978-3-642-04652-0_5.218

8 Cryptopedia Staff. The dao: What was the dao hack?, Oct 2023. URL: https://www.gemini.219

com/cryptopedia/the-dao-hack-makerdao.220

CVIT 2016

https://docs.midnight.network/develop/reference/compact/
https://midnight.network/
https://doi.org/10.1145/2500365.2500618
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/277650.277752
https://doi.org/10.1145/277650.277752
https://doi.org/10.1145/277650.277752
https://doi.org/10.1007/978-3-642-04652-0_5
https://www.gemini.com/cryptopedia/the-dao-hack-makerdao
https://www.gemini.com/cryptopedia/the-dao-hack-makerdao
https://www.gemini.com/cryptopedia/the-dao-hack-makerdao

	1 Introduction
	1.1 Industrial Application

	2 Integrating Specification and Implementation, by Example
	2.1 Step 1: Declare Abstract Syntax of the Target Language as a Nanopass IR
	2.2 Step 2: Transpilation of Abstract Syntax to Agda
	2.3 Step 3: Define Typing Rules as an Inductive Relation over Abstract Syntax

	3 Ensuring Completeness of Typing Relations
	4 Conclusion and Future Work

