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Abstract
This short paper aims to use modular effects to define modu-
lar languages with lambda abstraction. We argue that exist-
ing approaches to algebraic effects and handlers are not suit-
able for this challenge. Instead, we propose a new approach
that we dub staged effects and handlers. We show how to
use our approach to define lambda abstraction in a modular
way, and discuss open questions.
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tional languages.
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1 Introduction
This paper considers how to define languages modularly in
terms of a compositional denotation function:J_K : Expr → M V

Here, Expr is the type of abstract syntax trees,M is a monad,
and V is a value type. By modular we mean that one can (i)
add new constructors to Expr, and (ii) add new operations
toM without modifying existing code. By compositional we
mean that J_K defines the semantics of a complex expression
in terms of the semantics of its recursive sub-trees. Compo-
sitionality is attractive because it gives a semantics that is
nice to reason about [21], makes it possible to reuse J_K for
different M (for example, we could use J_K to define either
a static or dynamic semantics of Expr), and provides a clear
path to the first dimension of modularity (adding construc-
tors to Expr).
Existing work on data types à la carte [13, 24] addresses

the first dimension ofmodularity.Algebraic effect handlers [18]
are a flexible and popular framework that can be used to
address the second dimension of modularity. However, we
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cannot readily define some classes of effects modularly us-
ing effect handlers. Wu et al. [26] observe:

One aspect of handlers that has not received
much attention are scoping constructs. Exam-
ples of this are abound: we see it in construc-
tions for control flow, such as while loops and
conditionals, butwe also see this in pruning non-
deterministic computations, exception handling,
and multi-threading.

There is, however, another aspect of handlers that has not re-
ceived much attention: staging constructs. Examples of inter-
esting staging constructs and applications are abundant in
the literature on programming languages (and PEPM in par-
ticular) [2, 11, 20, 22, 25, 27].We focus on one kind of staging
construct, namely lambda abstraction. An expression 𝜆x. e
stages (postpones) the evaluation of e, and function applica-
tion unstages it. It is hard to fit this kind of staging in ex-
isting frameworks for effects and handlers [17, 18, 26]. In
particular, it is difficult to implement the following opera-
tions using algebraic effects and handlers:
abstr : Name → M Val → M Val
apply : Val → Val → M Val

In this short paper we address this challenge by proposing
a new kind of effect handler: staged effect handlers. We use
Agda1 as our meta language, assuming a passing familiar-
ity with dependent types, but not an in-depth knowledge of
Agda. The techniques we describe in this paper could also
be defined a functional language without dependent types,
such as Haskell or Scala. Our motivation for using Agda is a
desire to eventually use the framework proposed in this pa-
per to implement modular and intrinsically-typed language
definitions. For this paper, however, we limit ourselves to
simply-typed languages. An artifact that implements the frame-
work described in this paper is available online:

https://github.com/casvdrest/staged-effects.agda

The paper is structured as follows. § 2 defines three mod-
ular language fragments that we use as running examples.
Next, § 3 defines “plain” effects and handlers [18] in Agda
for only one of the modular fragments. Then § 4 shows that
scoped effects and handlers [17, 26] provide additional ex-
pressiveness, but conclude that scoped effects and handlers

1https://agda.readthedocs.io/
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alone are insufficient for defining staging constructs (lambda
abstraction and application). Finally, in § 5 we propose a
new notion of staged effects and handlers that lets us de-
fine both staging constructs and scoping constructs. § 6 con-
cludes.

2 Compositional Semantics for Languages
with lambda abstraction and State

Our goal is to implement a modular and compositional se-
mantics for the following object language:

Expr ∋ e ::= var x | abs x e | app e e | let x = e in e
| get | put e | nat n

where x ∈ Name ranges over names and n ∈ N ranges
over natural numbers. The semantics we consider is given
by a function J_K : Expr → M V, where M is an instance
of the following families of monads:

record LambdaM (M : Set → Set) (V : Set) : Set where
field fetch : Name → M V

abstr : Name → M V → M V
apply : V → V → M V
letbind : Name → V → M V → M V

record StateM (M : Set → Set) (S : Set) : Set where
field get : M S

put : S → M ⊤
record NatM (M : Set → Set) (V : Set) : Set where

field nat : N → M V

It may seem overly general to have letbind as its own oper-
ation, rather than desugaring it into abstr and apply. How-
ever, while this paper focuses on the problem of using ef-
fect handlers to define an interpreter for the language above,
we are ultimately interested in a broader goal: we want to
write denotation functions J_K : Expr → M V that
use effect handlers to modularly define diverse semantic ar-
tifacts such as modular compilers [5], modular abstract in-
terpreters [3, 12, 19], modular symbolic executors [15], and
other semantic artifacts. If we desire an M V that defines
a static semantics, the semantics of lambda binding and let
binding may differ (as in Hindley-Milner-Damas polymor-
phism [4, 10, 16]), and desugaring would be wrong.
In the remainder of this section we show how to defineJ_K in a way that lets us extend Expr with new constructors

without modifying existing code by using data types à la
carte [24] (DTC). The rest of this paper considers the chal-
lenge of extending M with new operations without modify-
ing existing code.

2.1 Modular Syntax
A prerequisite for using DTC to define J_K in a modular way,
is that Expr is defined in a modular way. We define a modu-
lar data type for Expr following Keuchel and Schrijvers [13]
by using containers [1] to ensure that our data types are

strictly-positive (as Agda requires). A container consists of
a shape, S, and position, P:
record Con : Set₁ where

constructor _ ⊲ _
field S : Set

P : S → Set

The shape describes the set of available constructors, and the
position maps each constructor to its corresponding arity
(i.e., the set of recursive sub-trees). For example, the follow-
ing container encodes an expression type for the state frag-
ment of our object language (e ::= get ∣ put e):2

StateExpr = Bool ⊲ 𝜆 { false → ⊥; true → ⊤}

Here we use a type with two inhabitants (one for put, one
for get) as the shape: Bool. Each inhabitant (false and true)
is associated with a position: the false case corresponds to
get which has no recursive sub-trees, so the set of recursive
positions is given by the empty type ⊥. On the other hand,
put has a single recursive argument, so the position for true
is associated with the unit type ⊤.
We relate container-encoded expressions to Agda types

by defining their semantics of type Set → Set:J_K𝑐 : Con → Set → SetJ S ⊲ P K𝑐 X = ∃ 𝜆 (s : S) → P s → X

A container is interpreted as a pair of a constructor s : S
and a function P s → X that maps each recursive position
of s to an Agda value of type X. To interpret data types with
recursive positions we need to take their least fixed-point:
data 𝜇 (C : Con) : Set where

⟨_⟩ : J C K𝑐 (𝜇 C) → 𝜇 C

Using this fixed-point, expressions in the state fragment are
typed by 𝜇 StateExpr.
Containers have a well-defined notion of union:3

_ ∪ _ : Con → Con → Con
(S1 ⊲ P1) ∪ (S2 ⊲ P2) =

S1 ⊎ S2 ⊲ 𝜆 { (inj₁ x) → P1 x; (inj₂ y) → P2 y}

Using this union, we canmodularly compose StateExprwith
the container description of nat expressions (e ::= nat n):
NatExpr = N ⊲ const ⊥

Here, N is the shape (there are as many nat expressions as
there are naturals) and const ⊥ says there are no recursive
sub-trees. The state+nat fragment of our object language
(e ::= get ∣ put e ∣ nat n) is thus given by StateExpr ∪
NatExpr. By similarly encoding the lambda fragment (LamExpr)
we can compose Expr from modular syntax fragments:

Expr ≃ 𝜇 (LamExpr ∪ StateExpr ∪ NatExpr)
2𝜆 {_ } is Agda syntax for a pattern matching lambda; ⊥ is the
empty type; and ⊤ is the unit type.
3X ⊎ Y is the type of a disjoint sum in Agda, whose constructors
are inj₁ : X → X ⊎ Y and inj₂ : Y → X ⊎ Y.

2
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2.2 Modular Semantic Functions
Weencode semantic functions for container-encoded expres-
sion types as algebras, given by the following type alias:

C ⇒ A ≜ J C K𝑐 A → A

By folding an algebra C ⇒ A over a data type 𝜇 C we can
turn recursive sub-trees into values A:
fold𝑐 : (C ⇒ A) → 𝜇 C → A
fold𝑐 f ⟨ s , p ⟩ = f (s , fold𝑐 f ◦ p)
This use of folds necessitates a compositional semantics: by
definition, algebras encode structurally-recursive (i.e., com-
positional) functions. The following algebra defines the se-
mantics of StateExpr expressions:4

algState : {| StateM M V |} → StateExpr ⇒ M V
algState (inj₁ tt , _) = get
algState (inj₂ tt , p) = do v ← p tt; put v; return v

Algebras ranging over two different containers C1 and C2

can be combined into an algebra ranging overC1 ∪ C2 using
a function (whose implementation we elide for brevity):
_ ⊙ _ : (C1 ⇒ A) → (C2 ⇒ A) → C1 ∪ C2 ⇒ A

Using algebra composition and our monad families, we can
compose algebras:
alg : {| LambdaM M V |} →

{| NatM M V |} →
{| StateM M V |} → Expr ⇒ M V

alg = algLam ⊙ algNat ⊙ algState

to obtain a denotation function J_K ≃ fold𝑐 alg.
We have shownhow tomodularly define expression types

and their semantics, bymodularlymapping expressions onto
a monad families. We have left open the question of how in-
stances of these monad families are defined. Indeed, if we
use “standard” monads, way may need to modify the imple-
mentation of each monad family when we add new effects.
Both monad transformers [14] and the slightly more struc-
tured algebraic effects and handlers afford more flexibility.
In the rest of this paper we consider how to use algebraic ef-
fects and handlers to define the monad family instances for
alg above in a way that does not require modifying existing
code.

3 Effects and Handlers
We illustrate how to define algebraic effects and handlers in
Agda as a free monad. The idea is to represent computations
as trees of possible sequences of effectful operations. Follow-
ing Hancock and Setzer [9], the type of such trees (I/O trees)
is IO 𝜎 A where 𝜎 : Con is a signature of operations given
by a container. Signatures can be freely composed using the
_ ∪ _ : Con → Con → Con function from § 2. I/O trees
are given by the following data type:
4Arguments enclosed in double curly braces (i.e., {|_ |}) are auto-
matically filled in by Agda using instance resolution.

data IO (𝜎 : Con) : Set → Set where
end : A → IO 𝜎 A
cmd : (c : S 𝜎) → (P 𝜎 c → IO 𝜎 A) → IO 𝜎 A

The constructor end represents a “pure” computation. The
cmd constructor represents an effectful operationwhose con-
structor is given by c : S 𝜎 , and whose continuation is pa-
rameterized by the return type P 𝜎 c of the operation. IO
trees are monadic with the end constructor as the return of
the monad, and with the following notion of bind:
_ ≫= _ : IO 𝜎 A → (A → IO 𝜎 B) → IO 𝜎 B
end x ≫= k = k x
cmd c p ≫= k = cmd c (𝜆 x → p x ≫= k)
A signature for two stateful operations, ‘get and ‘put, is

given by the following data type (defining a set of construc-
tors) and signature:5

data StateOp (H : Set) : Set where
‘get : StateOp H
‘put : H → StateOp H

StateSig : Set → Con
S (StateSig H) = StateOp H
P (StateSig H) ‘get = H
P (StateSig H) (‘put h) = ⊤

Trees with ‘get and ‘put operations are an instance of the
StateM record from § 2 by using a generic lift function, de-
fined in terms of a signature subtyping judgment (_ ≪ _)
(we elide the implementations of lift and _ ≪ _ for brevity,
and refer to our repository for the full details):
lift : (𝜎1 ≪ 𝜎2) → (c : S 𝜎1) → IO 𝜎2 (P 𝜎1 c)
StateInst : (StateSig H ≪ 𝜎) → StateM (IO 𝜎) H
get (StateInst w) = lift w ‘get
put (StateInst w) h = lift w (‘put h)
The following effect handler for state operations handles

state effects in a manner that is agnostic to what other ef-
fects a IO tree may contain:6

hSt : H → IO (StateSig H ∪ 𝜎) A → IO 𝜎 A
hSt _ (end x) = end x
hSt h (cmd (inj₁ ‘get) k) = hSt h (k h)
hSt _ (cmd (inj₁ (‘put h)) k) = hSt h (k tt)
hSt h (cmd (inj₂ y) k) = cmd y (hSt h ◦ k)

It is equally straightforward to define a handler for the nat
operation of the NatM family. We might try to define a han-
dler for the operations in LambdaM as well. However, the
monadic arguments of the letbind and lambda operations
pose a challenge: the IO type only admits branching over
possible continuations. In the term letbind x v m, the sub-
term m is a scoped computation and not a continuation in
5The StateSig function uses co-patterns to define the values
of the fields in the returned Signature. For example, The line
S (StateSig H) = . . . defines the S field of the record StateSig H.
6It would have been equally possible to define this handler in
terms of a generic fold over IO trees; a so-called deep handler.

3
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the sense that IO supports. In the next section we show
how scoped effects and handlers [17, 26] let us implement
the letbind operation, but argue that both plain and scoped
effects and handlers are insufficient for handling lambdas.

4 Scoped Effects and Handlers
The IO trees from the previous section do not support scop-
ing constructs.Thismakes it challenging to define LambdaM’s
letbind operation in a modular manner. In this section we il-
lustrate how this shortcoming is addressed by scoped effects
and handlers, due to Wu et al. [26] and Piróg et al. [17]. The
encoding of trees with scoped effects shown in this section
is equivalent to that of Piróg et al. [17].

4.1 Trees With Scoped Effects
Trees with scoped effects are given by the type Prog 𝜎 𝛾 A
where 𝜎 : Con is the signature for “plain” operations (like
the ones in § 3), and 𝛾 : Con is the signature of scoping con-
structs. Trees of operations and scope constructs are given
by the following Prog data type:
data Prog (𝜎 𝛾 : Con) (A : Set) : Set₁ where

var : A → Prog 𝜎 𝛾 A
op : (c : S 𝜎) → (P 𝜎 c → Prog 𝜎 𝛾 A) →

Prog 𝜎 𝛾 A
scope : (g : S 𝛾) → (P 𝛾 g → Prog 𝜎 𝛾 B) →

(B → Prog 𝜎 𝛾 A) → Prog 𝜎 𝛾 A

The var and op constructors correspond to the end and cmd
constructors of IO (§ 3). The scope constructor represents
an occurrence of a scoping construct with a set of scopes
(P 𝛾 g → Prog 𝜎 𝛾 B) and a continuation (B →
Prog 𝜎 𝛾 A).

Programs are monadic, with the var constructor as the
return of the monad, and with the following notion of bind:
_ ≫= _ : Prog 𝜎 𝛾 A → (A → Prog 𝜎 𝛾 B) → Prog 𝜎 𝛾 B
var x ≫= g = g x
op c k ≫= g = op c (𝜆 x → k x ≫= g)
scope s sc k ≫= g = scope s sc (𝜆 x → k x ≫= g)

4.2 Effect Weaving
A key difference between plain effect handlers and scoped
effect handlers is that scoped effect handlers weave effects
through both continuations and scopes, as illustrated in the
last case of the following handler for ‘get and ‘put:
hSt’ : H → Prog (StateSig H ∪ 𝜎) 𝛾 A → Prog 𝜎 𝛾 (A × S)
hSt’ h (var x) = var (x , h)
hSt’ h (op (inj₁ ‘get) k) = hSt’ h (k h)
hSt’ _ (op (inj₁ (‘put h)) k) = hSt’ h (k tt)
hSt’ h (op (inj₂ y) k) = op y (hSt’ h ◦ k)
hSt’ h (scope g sc k) =

scope g (hSt’ h ◦ sc) (𝜆 { (x , h’) → hSt’ h’ (k x) })

Note that hSt’ coincides with hSt when 𝛾 is empty.

4.3 Defining and Handling Let Binding
The scope constructor lets us define effects for variable lookups
and let bindins modularly, by means of the following signa-
ture definitions:
data FetchOp : Set where

‘fetch : Name → FetchOp

FetchSig : Set → Con
S (FetchSig V) = FetchOp
P (FetchSig V) (‘fetch x) = V

data LetScope (V : Set) : Set where
‘letbind : Name → V → LetScope V

LetSig : Set → Con
S (LetSig V) = LetScope V
P (LetSig V) (‘letbind n v) = ⊤
By modeling letbind as a scoped effect, we can handle let
binding and variable fetching using the following handler
for FetchSig and LetScope:7

Env : Set → Set
Env V = List (Name × V)
hLet : Env V →

Prog (FetchSig V ∪ 𝜎) (LetSig V ∪ 𝛾) A →
Prog 𝜎 𝛾 (Maybe A)

hLet _ (var x) = var (just x)
hLet E (op (inj₁ (‘fetch x)) k) =

maybe (hLet E ◦ k) (var nothing) (lookup E x)
hLet E (op (inj₂ c) k) = op c (hLet E ◦ k)
hLet E (scope (inj₁ (‘letbind n v)) sc k) =

hLet ((n , v) :: E) (sc tt) ≫=
maybe (hLet E ◦ k) (var nothing)

hLet E (scope (inj₂ g) sc k) =
scope g (hLet E ◦ sc) (maybe (hLet E ◦ k) (var nothing))

4.4 The Challenges With Handling Lambda
We could try to define a handler for lambda in a similar
manner as hLet. Since a lambda scopes the effects that are
stored in the body of the function, our only choice is to de-
fine lambda as a scoping construct; i.e.:
data LamScope : Set where

‘lambda : Name → LamScope

LamSig : Set → Con
S (LamSig V) = LamScope
P (LamSig V) (‘lambda n) = V

However, it is not obvious how to define a handler for this
scoping construct that behaves as we would expect lambdas
to behave. Consider the following handler function with a
hole ({ !!}) in it:
hLam : Env V →

Prog (FetchSig V ∪ 𝜎) (LamSig V ∪ 𝛾) A →
Prog 𝜎 𝛾 (Maybe A)

7tt is the unit value and maybe is the eliminator of the Maybe type.
4
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-- …
hLam E (scope (inj₁ (‘lambda n)) sc k) = hLam E (k { !!})
hLam E (scope (inj₂ g) sc k) =

scope g (hLam E ◦ sc) (maybe (hLam E ◦ k) (var nothing))

There are two problems with here. The first problem is that
in the application k { !!}, the hole must be filled with a value
of some generic type B. However, the continuation k is sup-
posed to accept a lambda (closure) value. The root of the is-
sue is that the scope constructor says scopes have a polymor-
phic return type.This polymorphism is essential for weaving
effect handlers through scopes, but here it gets in the way.

The second problem is that, by defining lambdas as a scop-
ing construct, effect handlers will always be applied under
lambdas. For example, the weaving that happens in the last
case of hSt’ from § 4.2 will cause stateful operations under
lambdas to be evaluated before the function is applied. For
example, consider this program which we would expect to
yield 42:

prog = do n0 ← nat 0; put n0
closr ← lambda x get
n42 ← nat 42; put n42
apply closr n0

If we apply the state handler hSt’ above before we apply
hLam then weave will eagerly evaluate the get under the
lambda, causing the operation to be replaced by the value 0,
giving the wrong result: 0 instead of 42!

5 Staged Effects and Handlers
We show how to overcome both the first and the second
problem summarized above, by introducing a new Tree type
that supports staged effects. This Tree type is based on two
ideas. Firstly, instead of requiring scoped computations to
always have a polymorphic type, the signatures of staged
operations fix the return types of each scoped computation.
(This addresses the first problem we identified above.) Sec-
ondly, instead of requiring that handlers are always fully ap-
plied when we weave them through effect scopes, Tree lets
us weave partially-applied handlers through effect scopes,
such that we can, for example, postpone applying a state
handler to a store. (This addresses the second problem we
identified above.)

5.1 Trees With Staged Effects
Trees with staged effects are given by the type Tree L 𝜁 A,
where L : Set → Set is a functor representing the set of
latent effects of nodes in the tree, and 𝜁 : Sig is the signature
of operations with staging. 𝜁 signatures are comprised of a
pair of a regular signature 𝜎 : Con, similar to I/O trees,
and a 𝜎-dependent signature ξ : S 𝜎 → Con which says
what the parameter- and return-types are of staged effect
scopes. For convenience, the following Sig type combines
dependent σ,ξ pairs in a single record type:

record Sig : Set₁ where
field S1 : Set; P1 : S1 → Set

S2 : S1 → Set;P2 : ∀ {s1 } → S2 s1 → Set

Signatures of operationswith staging have a straightforward
notion of sum _⊕_ and subtyping _ ⊏ _ (whose implementa-
tions we elide for brevity), analogous to regular signatures.

Trees with staged effects are given by the following type:
data Tree (L : Set → Set) (𝜁 : Sig) (A : Set) : Set₁ where

leaf : A → Tree L 𝜁 A
node : (c : S1 𝜁 ) → L ⊤ →

((s2 : S2 𝜁 c) → L ⊤ → Tree L 𝜁 (L (P2 𝜁 s2))) →
(L (P1 𝜁 c) → Tree L 𝜁 A) → Tree L 𝜁 A

The arguments of a ‘node c l st k’ are: (i) a constructor
c; (ii) latent effects l; (iii) staged effect scopes st : (s2 :
S2 𝜁 c) → L ⊤ → Tree L 𝜁 (L (P2 𝜁 s2)); and
(iv) a continuation expecting a response wrapped in a la-
tent effect context (L (P1 𝜁 c)). The latent effects l are a
main difference between the Tree type and the Prog type
from the previous section: each node in a Tree “remembers”
which effects other effect handlers have propagated past the
node, effectively staging these effects. For example, after ap-
plying a state handler, each node in the tree “remembers”
which store it should be evaluated under. By parameterizing
staged effect scopes by an effect context L ⊤, we can weave
handlers through scopes in a way that these handlers are
evaluated relative to some “future” effect context. In § 5.3
we illustrate how this lets us propagate handlers for state
under lambdas in a way that state operations inside lambda
bodies are handled relative to a future store.
Unlike the Prog type from the previous section, the Tree

type above does not have separate constructors for “plain”
or “scoped” operations.We conjecture that “plain” and “scoped”
operations can be defined as special cases of nodes in a Tree.

Trees are monadic, with the leaf constructor as the return
of the monad, and with the following notion of bind:
_ ≫= _ : Tree L 𝜁 A → (A → Tree L 𝜁 B) → Tree L 𝜁 B
leaf x ≫= g = g x
node z l st k ≫= g = node z l st (𝜆 x → k x ≫= g)

5.2 Effect Staging
Below is the handler for state defined in terms of Tree:8

hSt” : {| RawFunctor L |} →
H → Tree L (StateSig H ⊕ 𝜁 ) A →
Tree ((H ×_) ◦ L) 𝜁 (H × A)

hSt” h (leaf x) = leaf (h , x)
hSt” h (node (inj₁ ‘get) l _ k) = hSt” h (k (const h <$> l))
hSt” _ (node (inj₁ (‘put h)) l _ k) = hSt” h (k l)
hSt” h (node (inj₂ c) l st k) =

node c (h , l)
8RawFunctor L says that L is a functor, and _<$>_ is the map
function of the functor instance. Note that StateSig H : Sig is a
straightforward adaptation of the StateSig H : Con from § 3.
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(𝜆 {z (h’ , l’) → hSt” h’ (st z l’) })
(𝜆 { (h’ , lr) → hSt” h’ (k lr) })

The ‘get case now enacts the latent effects l of their nodes
by injecting the response value into the latent effect context
l : L ⊤. The ‘put case also enacts the latent effects by the
application of k to l. The last case of hSt” weaves the hSt”
handlers through nodes other than StateSig node, by wrap-
ping the latent effects l in the state functor (H ×_), staging
the passing of the “current” store h (or perhaps an extension
thereof) to the staged effect scope st and continuation k.

5.3 Defining and Handling Let Binding and Lambda
The Tree type lets us define the syntax and handling of the
operations in LambdaM in a modular manner. We use the
following record type to assert the existence of introduction
and elimination functions for closures:
record ClosureVal (V : Set) : Set where

field close : Name → FunLabel → Env V → V
isClos : V → Maybe (Name × FunLabel × Env V)

Here, FunLabel is a pointer into a “resumption store” com-
prising the (latently effectful) code of function bodies:
Resumptions : (Set → Set) → Sig → Set → Set
Resumptions L 𝜎 V =

List (L ⊤ → Tree L (LamOpSig V ⊕ 𝜎) (L V))

The motivation for representing closures and storing them
in a store in this way ismodularity: by using labels to denote
function bodies, our notion of value makes no assumptions
about what latent effects are in the Trees of function bod-
ies. Only the handler hLam’ below needs to know the ac-
tual type of function bodies. The handler uses try m f =
maybe f (leaf nothing) m for mapping an f : A →
Tree L 𝜁 (Maybe B) over anm : Maybe A, and is parameter-
ized by: (i) an environment Env V (for variable binding); (ii)
a resumption store (for allocating and dereferencing func-
tion values); and (iii) a “fuel” counter [23]. The fuel counter
is for ensuring that hLam’ terminates (by bottoming out and
returning nothing) for diverging functions.
hLam’ : {| ClosureVal V |} → {| RawFunctor L |} →

Env V → Resumptions L 𝜁 V → N →
Tree L (LamOpSig V ⊕ 𝜁 ) A →
Tree (Maybe ◦ (Resumptions L 𝜁 V ×_) ◦ L)

𝜁 (Maybe (Resumptions L 𝜁 V × A))
-- elided: leaf and case for out-of-fuel exception

hLam’ E funs (suc m) (node (inj₁ (‘app v1 v2)) l _ k) =
try (isClos v1) 𝜆 { (n , f , E’) →

try (retrieve funs f) (𝜆 r →
hLam’ ((n , v2) :: E’) funs m (r l) ≫=

flip try (𝜆 { (funs’ , lv) →
hLam’ E funs’ m (k lv) })) }

hLam’ E funs (suc m) (node (inj₁ (‘fetch n)) l _ k) =
try (lookup E n) (𝜆 v →

hLam’ E funs m (k (const v <$> l)))

hLam’ E funs (suc m) (node (inj₁ (‘abs n)) l st k) =
hLam’ E (funs ++ [ st tt ]) m

(k (const (close n (length funs) E) <$> l))
hLam’ E funs (suc m) (node (inj₁ (‘letbind n v)) l st k) =

hLam’ ((n , v) :: E) funs m (st tt l) ≫=
flip try 𝜆 { (funs’ , lv) → hLam’ E funs’ m (k lv) }

hLam’ E funs (suc m) (node (inj₂ c) l st k) =
node c (just (funs , l))

(𝜆 r → flip try (𝜆 { (funs’ , l’) →
hLam’ E funs’ m (st r l’) }))
(flip try 𝜆 { (funs’ , lr) → hLam’ E funs’ m (k lr) })

The ‘abs case passes a closure value to k and (importantly!)
does not apply the staged effect scope st to the latent ef-
fects yet. The ‘app case first unpacks the closure (via isClos),
retrieves the function body in the resumption store, and then
applies the function body to the latent effects l for the appli-
cation node. The case for letbind illustrates how a scoped
effect is a special case of a staged effect.

6 Discussion and Conclusion
The previous section has shown that with the Tree data type
we can define operations in LambdaM, StateM, and NatM,
and handle their effects in a modular way—we can addmore
operations without modifying their code. Below we discuss
open questions about Tree.

Is Tree a free monad? The IO type of Hancock and Setzer
[9] and the Prog type of Piróg et al. [17], Wu et al. [26] are
freemonads.We expect that the Tree type is too, by a similar
line of reasoning as that of Piróg et al. [17, §4.1].

Recursion schemes. The IO type and the Prog types both
admit notions of fold that factor out recursion. We expect
that it is possible to define a similar notion of fold for Tree,
and that this would work for defining the shown hSt” and
a (scoped) handler for let bindings. However, hLam’ has
non-standard recursion, andwould require reformulation to
(possibly) fit into a fold based recursion scheme.

Staging beyond lambdas. In future work we will explore
how to use staged effects and handlers to define the seman-
tics of more interesting staging constructs, such as the stag-
ing abstractions found in MetaML [25] and related staging
frameworks [2, 20, 22, 25].

Laws of LambdaM. Monadic operations are typically gov-
erned by laws that characterize their properties. These laws
enable formal reasoning about the operations independent
of their handler [8] and at the same time constrains han-
dler implementations. As we plan to integrate our staged
effects in the 3MT framework [6] in order to use LambdaM
and other staging constructs in modular mechanized meta-
theory proofs, we will have to devise laws for them.
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