
Reusable Programming Language
Components

Proefschrift

ter verkrijging van de graad van doctor
aan de Technische Universiteit Delft

op gezag van de Rector Magnificus prof.dr.ir. T.H.J.J. van der Hagen
voorzitter van het college voor promoties

in het openbaar te verdedigen op [DATUM]

Door

Casper Roland van der REST
doctorandus in de informatica

behaald aan de Universiteit Utrecht, Nederland
geboren te Rotterdam, Nederland

[February 18, 2025 at 13:46 – version 4.2]

Voor pap, mam en alle anderen op wie ik altijd kan rekenen

[February 18, 2025 at 13:46 – version 4.2]

[February 18, 2025 at 13:46 – version 4.2]

C O N T E N T S

1 Introduction 1
1.1 The Problem: a Lack of Types and Type Safety 2
1.2 Solution Direction and Thesis Statements 6
1.3 Research Methods in Programming Languages 8
1.4 Approach and Thesis Structure 9
1.5 Origin of the Chapters 12
1.6 A Note on Artifacts 14

i Modular Semantics in Agda
2 Intrinsically-Typed Definitional Interpreters à la Carte 17

2.1 Introduction 18
2.1.1 Background: Intrinsically-Typed Interpreters 21
2.1.2 Challenge: Intrinsically-Typed Programming

Language Fragments 21
2.1.3 Contributions 23

2.2 Data Types à la Carte 24
2.2.1 Composing Data Types 25
2.2.2 Composing Functions 29
2.2.3 Discussion 31

2.3 Indexed Data Types à la Carte, for Defining Com-
posable Intrinsically-Typed Interpreters 32
2.3.1 Composing Index Types 32
2.3.2 Composing Intrinsically-Typed Values 33
2.3.3 Composing Intrinsically-Typed Expressions 34
2.3.4 Composing Index-Preserving Functions 36
2.3.5 Discussion 39

2.4 Intrinsically-Typed Language Fragments 41
2.4.1 Canons and Language Fragments 42
2.4.2 Fragment Composition and the Need for

Partially-Overlapping Canons 43
2.4.3 Fragment Composition with Partially-Overlapping

Canons 44

ix

[February 18, 2025 at 13:46 – version 4.2]

x contents

2.5 Language Fragments with Lexical Variables and
Effects 48
2.5.1 Fragments for a Class of Semantic Domains 49
2.5.2 Simply-Typed Lambda Calculus 53
2.5.3 Exceptions 54
2.5.4 ML-Style References 55
2.5.5 Case Study 58
2.5.6 Discussion 59

2.6 Related Work 60
2.6.1 Meta-Theory à la Carte. 60
2.6.2 Generic Programming and Meta-Theory 61
2.6.3 Other Approaches to Modular Semantics

and their Proofs 63
2.7 Conclusion 65

3 Hefty Algebras: Modular Elaborations and Reasoning
for Programs with Higher-Order Effects 67
3.1 Introduction 68

3.1.1 Background: Algebraic Effects and Han-
dlers 68

3.1.2 The Modularity Problem with Higher-Order
Operations 70

3.1.3 Solving the Modularity Problem: Elabora-
tion Algebras 73

3.1.4 Contributions 75
3.2 Algebraic Effects and Handlers in Agda 77

3.2.1 Algebraic Effects and The Free Monad 77
3.2.2 Row Insertions and Smart Constructors 79
3.2.3 Fold and Monadic Bind for Free 81
3.2.4 Effect Handlers 82
3.2.5 The Modularity Problem with Higher-Order

Effects, Revisited 84
3.2.6 Scoped Effects and Handlers 86

3.3 Hefty Trees and Algebras 91
3.3.1 Generalizing Freeto Support Higher-Order

Operations 92
3.3.2 Programs with Algebraic and Higher-Order

Effects 96

[February 18, 2025 at 13:46 – version 4.2]

contents xi

3.3.3 Higher-Order Operations with Polymor-
phic Return Types 96

3.3.4 Hefty Algebras 98
3.3.5 Discussion and Limitations 100

3.4 Examples 103
3.4.1 � as a Higher-Order Operation 103
3.4.2 Optionally Transactional Exception Catch-

ing 107
3.4.3 Logic Programming 110
3.4.4 Concurrency 111

3.5 Modular Reasoning for Higher-Order Effects 113
3.5.1 Theories of Algebraic Effects 115
3.5.2 Modal Necessity 116
3.5.3 Effect Theories 118
3.5.4 Syntactic Equivalence of Effectful Programs 121
3.5.5 Handler Correctness 124
3.5.6 Theories of Higher-Order Effects 125
3.5.7 Equivalence of Programs with Higher-Order

Effects 127
3.5.8 Correctness of Elaborations 130
3.5.9 Proving Correctness of Elaborations 132

3.6 Related Work 134
3.7 Conclusion 136

ii Meta Language Design
4 Towards a Language for Defining Reusable Program-

ming Language Components 141
4.1 Introduction 141
4.2 CS by Example 145

4.2.1 Data Types and Functions 145
4.2.2 Effects and Handlers 146
4.2.3 Order of Evaluation, Suspension, and En-

actment 149
4.2.4 Modules and Imports 150
4.2.5 Composable Data Types and Functions 151

4.3 Defining Reusable Language Components in CS 154
4.3.1 A Signature for Reusable Components 154

[February 18, 2025 at 13:46 – version 4.2]

xii contents

4.3.2 A Language Component for Arithmetic Ex-
pressions 155

4.3.3 Implementing Functions as a Reusable Ef-
fect 156

4.3.4 Example Usage 160
4.4 Related Work 162

4.4.1 Effect Semantics 162
4.4.2 Implementations of Algebraic Effects and

Handlers 163
4.4.3 Semantics of Composable Data Types and

Functions 164
4.4.4 Row Types 165

4.5 Future Work 166
4.6 Conclusion 166

5 Types and Semantics for Extensible Data Types 169
5.1 Introduction 169

5.1.1 Contributions 171
5.2 Programming with Extensible Data Types, by Ex-

ample 172
5.2.1 Notation 173
5.2.2 Modular Interpreters in the style of Data

Types à la Carte 174
5.2.3 Modular Algebraic Effects using the Free

Monad 174
5.2.4 Modular Higher-Order Effects 176

5.3 The Calculus 178
5.3.1 Well-Formed Types 179
5.3.2 Well-Typed Terms 181
5.3.3 Type Equivalence 182

5.4 Categorical Semantics 184
5.4.1 Interpreting Kinds and Kind Environments 185
5.4.2 Interpreting Types 186
5.4.3 On the Existence of Initial Algebras 191
5.4.4 Arrow Types Correspond to Morphisms 193
5.4.5 Interpreting Terms 194

5.5 Operational Semantics 196
5.5.1 Reduction Rules 197

[February 18, 2025 at 13:46 – version 4.2]

contents xiii

5.5.2 Relation to the Denotational Model 198
5.6 Related Work 200
5.7 Conclusion and Future work 202

Conclusions
6 Conclusions 207

6.1 Summary of the Contributions 207
6.2 Hypothesis 1: intrinsically-typed interpreters 208
6.3 Hypothesis 2: Meta Language Design 210
6.4 Future Work 211

6.4.1 Modular semantics 211
6.4.2 Meta Language Design 213
6.4.3 Connecting the Dots 213

Appendix

Bibliography 217
Summary 245
Samenvatting 249
Titles in the IPA Dissertation Series 255

[February 18, 2025 at 13:46 – version 4.2]

[February 18, 2025 at 13:46 – version 4.2]

1
I N T R O D U C T I O N

Sometimes a computer does not do what it is supposed to do.
The colloquial term for a computer mishap is bug, named after a
famous incident in 1947 involving the Harvard Mark II computer,
where operators discovered a moth that had worked its way into
the internals of the machine causing it to malfunction. Although
the moth in question is unlikely to cause any more trouble—it
is kept safely in the National Museum of American History in
Washington D.C.—the term “bug” has stuck around, and is used
to refer to any unintended or unexpected behavior of a computer
or program. Nowadays, with the ever-increasing pervasiveness
of computers in almost all aspects of our daily lives, the number
of opportunities for bugs to inflict damage is growing as well.
Indeed, the economical and societal consequences of software
malfunctions are potentially enormous.1 1 For example, in 2022

CISQ estimated the
“cost of poor software
quality” in the US to be
2.41 Trillion US dollar.

Bugs can have a wide variety of causes, but often they arise
as a result of what we might classify as miscommunication be-
tween the programmer and the machine. This class of bugs is
fittingly summarized by the acronym PEBCAK: Problem Exists
Between Chair And Keyboard. The programmer assumes they
have produced a piece of code that does one thing, but when
the program is executed by the machine something else happens.
The program could produce a wrong result, behave unexpectedly,
or even crash altogether. At first glance it is tempting to ascribe
such errors to a lack of skill or training on behalf of the program-
mer. After all, a computer does nothing apart from diligently
executing the instructions we give it. This is, however, only part
of the story. The tool used by the programmer to communicate

1

[February 18, 2025 at 13:46 – version 4.2]

2 introduction

with the machine, the programming language, plays an important
role too. It shapes the way programmers think about a problem,
and sets the boundaries for what constitutes a valid program
text.

There are vast differences across languages when it comes to
how well they shield programmers from their own mistakes,
and how effective they allow them to communicate with the
machine. Undeniably, some programming languages make it
easier for programmers to “shoot themselves in the foot”. Over
time programming languages have become more effective at
protecting programmers from their own mistakes. Where the first
computers were programmed by punching holes into a paper
card, with careful examination of the punched card being the
only safeguard against bugs, modern languages provide much
more support for catching mistakes during the development
process. Languages may do this by abstracting away from details
of the underlying machine that are otherwise very error-prone
to work with, such as memory management or concurrency,
or performing sophisticated compile-time checks to eliminate
certain classes of mistakes altogether. Despite these advances,
bugs remain prevalent and there remains much to be gained
from further improving programming language design.

1.1 the problem : a lack of types and type safety

One of the most important techniques in programming language
design for preventing bugs are type systems. Pierce [2002] coins
the following definition:

A type system is a tractable syntactic method for
proving the absence of certain program behaviors by
classifying phrases according to the kinds of values
they compute.

This quote describes a somewhat classical perspective on type
systems, where each (sub)term is assigned a type that classifies
the kind of value that it evaluates to. These kinds of type systems
rule out errors resulting from a mismatch in the type of data. For

[February 18, 2025 at 13:46 – version 4.2]

1.1 the problem : a lack of types and type safety 3

example, if we write a program that feeds a piece of text to a
function that is meant to take a number as input, the type checker2 2 A type checker is a

computer program that
implements a type
system. It is a decision
procedure that
determines whether a
program is well-formed
according to the rules of
the system.

should catch the mistake before the program is ever executed.
Nowadays, type systems have the potential to statically enforce

much more sophisticated properties beyond tracking the kind of
values computed by a term. For example, type-and-effect systems
keep track of the side effects of evaluating a term [Nielson and
Nielson, 1999], quantitative type theory monitors the number of
times a variable is consumed [Atkey, 2018], and session types con-
troll the interaction of processes in a distributed setting [Honda
et al., 1998].

It is important to realize that a type system merely defines a
partion of the set of all program texts into two groups based
on whether a program is well-typed according to the system
or not. In practice, this judgment is only of interest to us if we
can relate it to what happens when programs are executed. That
is, if a program is judged to be well-typed by the system, this
should imply that execution of the program is indeed devoid of
certain kinds of erroneous behavior. This is an important meta-
property of type systems, aptly summarized by Milner [1978] in
his famous quote:

Well-typed programs cannot go wrong.

If a type system successfully rules out all programs that exhibit
a particular kind of wrong behavior,3 it is said to be type sound. 3 The precise meaning

of “wrong” here
depends on the kind of
errors the type system is
intended to prevent.

Dually, we could say that a type system is complete if it designates
all programs that do not exhibit wrong behavior as well-typed.
However, as a consequence of Rice’s theorem,4 it is impossible for

4 Rices theorem states
that any non-trivial
semantic property of a
program is
undecidable: no
systematic procedure
can exist that decides
whether such a property
holds or not.

a type system to be both sound and complete. Since their main
purpose is to prevent software errors, type systems are typically
designed to be sound, giving up completeness.

Evidently, type soundness is a key property of a type system
to be a suitable tool for helping programmers write correct pro-
grams. How can we establish that a type system is sound? The
most airtight method is to mathematically verify type soundness,
for example using the syntactic approach of Wright and Felleisen

[February 18, 2025 at 13:46 – version 4.2]

4 introduction

[1994]. However, this is rarely done outside the context of aca-
demic research since producing the required proofs is a complex
and incredibly time-consuming task. As a result, trust in the judg-
ment of type checkers for mainstream programming languages
is typically based on empirical instead of mathematical evidence.

Moreover, the absence of wrong behavior in well-typed pro-
grams is limited to those mistakes that the type system was
designed to rule out. Type systems of mainstream programming
languages generally model only limited aspects of a program’s
execution, ignoring, for example, interaction with the file system
or a shared piece of memory. Still, these may very well cause
erroneous behavior, so by not modelling them in the type system
bugs may arise despite the type checker’s blessing.

This leaves us with the following two ways in which (im-
plementations of) mainstream programming languages are not
helping programmers prevent bugs as much as they could:

• languages and their type system tend not to be formally
specified, let alone verified to be sound. This diminishes
the extent to which we can trust a type checker to deliver a
meaningful judgment, and

• type checkers tend to model only limited aspects of a pro-
gram’s execution, usually the type of values computed by a
term. This leaves the programmer alone in catching errors
that arise from any other aspect of a program’s execution.

These shortcomings do not exist because the state-of-the-art
in programming language theory does not offer us ways to
address them. Still, if we look at the difference between what is
possible at the cutting edge of programming language design
and verification, and the programming languages that people
actually use, we find a gap spanning, in extreme cases, several
decades. To illustrate: a form of pattern matching was added to
both Java and Python5

5 More details on
pattern matching in

Java and Python can
found in the release

notes for Java 16 and
Python 3.10,
respectively.

in 2021, while Haskell, which is by no
means the source of the technique, included it as of its original
specification released back in 1992 [Hudak et al., 1992]. This begs
the question: why is there such a large gap between the cutting

[February 18, 2025 at 13:46 – version 4.2]

https://www.oracle.com/java/technologies/javase/16-relnote-issues.html
https://docs.python.org/3/whatsnew/3.10.html

1.1 the problem : a lack of types and type safety 5

edge in programming language research and daily practice of
programming language design?

The simple, yet unsatisfying, explanation is that it is a matter of
accessibility. The development of new programming languages
requires a tremendous amount of time, knowledge, and effort
on behalf of the language designers. The already significant cost
involved with developing a programming language is multiplied
when we include a formal specification of the type system and
proofs of type soundness. This makes it unrealistic for most,
if not all, real-world language projects to benefit from the full
potential of what the state-of-the-art in programming language
technology has to offer: the associated cost is simply too high.
The few examples of the formal specification and verification of
programming languages and their implementations at scale that
do exist, such as CompCert [Leroy, 2009] or CakeML [Kumar
et al., 2014], are large and multi-year colaborative efforts by
experts in the field of programming languages. Considering the
vast amount of time and expertise required for such projects, they
present an impossible standard for the vast majority of language
projects.

We summarize the situation as follows:

The development of formally specified and verified
programming languages is extremely expensive, and
therefore an unrealistic standard for real-world lan-
guage projects. As a result, there exists a gap between
the level of safety that the cutting edge in program-
ming language design has to offer, and what is pro-
vided by mainstream programming languages.

This thesis works towards closing this gap, by developing tools
and techniques for reducing the cost of developing formally
specified and verified programming languages. Ultimately, the
goal is to bring the highest standard of correctness and safety
offered by the state-of-the-art in programming language research
to the languages that programmers use to write software every
day.

[February 18, 2025 at 13:46 – version 4.2]

6 introduction

1.2 solution direction and thesis statements

The main strategy we adopt in this thesis for reducing the costs
associated with the development of formally specified and veri-
fied programming languages is component reuse. That is to say: the
development cost of formally verified programming languages
would be greatly reduced if we could benefit from previous ver-
ification efforts by grabbing off-the-shelf components for those
features that are shared with other languages. This would allow
us to direct more resources towards specifying and verifying
the novel features of a language project. Indeed, the POPLMark
challenge [Aydemir et al., 2005], which provides a benchmark for
measuring how well state-of-the art technology in formal verifi-
cation is up to the task of formalizing programming language
metatheory, identifies component reuse as one of the key issues
inhibiting a more widespread adoption of formal verification
techniques in the design and development of new programming
languages.

In a perfect world, we would specify and verify programming
languages on a per-feature basis. The definition of each language
construct should be such that it is a mathematically rigorous
and executable specification of that construct’s semantics,6 but6 A language’s

semantics gives a
mathematical

description of how a
program behaves when

executed.

simultaneously concise and perspicuous enough that it can serve
as documentation to readers with a background in computer
science. Furthermore, we should be able to reuse these specifica-
tions in the context of a different language project without having
to alter the original specification. This combination of qualities
will allow for rapid development of and experimentation with
new designs of formally specified and verified programming
languages.

Before we can achieve modular, formal, and readable specifi-
cations of programming language components, we identify two
fronts on which we need to make progress. The first challenge
is to formally specify and verify programming language compo-
nents in a way that the specification remains independent of the
context of the language in which they are used, while remaining
concise and readable. Especially when we require a type-safety

[February 18, 2025 at 13:46 – version 4.2]

1.2 solution direction and thesis statements 7

proof to be part of this specification, and when we want to mod-
ularly define a component’s side effects. Second, we recognize
that the functional and/or dependently-typed meta languages7 7 Examples of this

would be languages like
Haskell or Agda.

used to define and verify programming languages offer little to
no support for modular definitions.8 As a result, once we set

8 Wadler [1998] coined
the term expression
problem for this lack of
modularity in
(functional) languages.

out to define reusable programming language components in
these meta languages, we find that modularity adds significant
syntactic and interpretive overhead to our definitions.

To make things concrete, this thesis explores the following two
hypotheses:

Hypothesis 1: reusable programming language com-
ponents should be concise, readable, and safe-by-
construction. Intrinsically-typed definitional interpreters
are an excellent match for these requirements.

Hypothesis 2: modularity adds significant syntactic
and interpretative overhead when using state-of-the
art (dependently-typed) programming languages to
define reusable programming language components.
Incorporating modular inductive data types in the
design of functional languages is therefore a essential
first step in the development of meta languages for the
purpose of defining reusable programming language
components.

It is important to be mindful of the limitations of intrinsically-
typed interpreters as a means to specify a language’s semantics.
Recent work by Bach Poulsen et al. [2018], Rouvoet et al. [2020]
showed that the technique is suitable for defining the semantics
of imperative languages and languages with session types, but
the technique has yet to be applied to more advanced type sys-
tems. While mechanizations of both System F [Chapman et al.,
2019] and dependent type theory [Altenkirch and Kaposi, 2016]
exist, it is not clear how their semantics could be expressed as
intrinsically-typed interpreters in the style of Augustsson and
Carlsson [1999]. This thesis is concerned with defining reusable
programming language components for those languages to which

[February 18, 2025 at 13:46 – version 4.2]

8 introduction

can already be described using intrinsically-typed definitional
interpreters. Before discussing in more detail how this thesis
works towards this goal, we must first say a few words about
how research on programming languages, including the research
presented in this thesis, tends to be conducted.

1.3 research methods in programming languages

Typically, papers introduce a new idea or concept9 somewhat in-9 Here, “idea” can by
any sort of contribution,

be it a novel language
design, a type-checking

algorithm, techniques
for specifying a

language’s semantics, or
something else.

formally, using (code) examples and appealing to the reader’s in-
tuition. It is usually only in the later sections that papers develop
a more mathematically rigorous description of their contribu-
tions, using mathematical notation and proofs. This “top-down”
approach, which focusses on fostering a high-level understending
of a paper’s contents, is somewhat necessary in many cases due
to a general lack of quantifiable measures for evaluating research.
For instance, how would one quantify the usefulness of a new
programming feature or proof technique? Rather than relying on
the value of contributions to be self-evident, some responsibility
is shifted to researches to explain why their contributions are
relevant to the community.

When it comes to mathematical proofs, the programming lan-
guages community distinguishes pen-and-paper proofs from mech-
anized proofs. The former documents a mathematical argument
using a combination of natural language and mathematical nota-
tion, and is intended to be read by humans. The latter embeds
the entire argument in a chosen formalism, and is intended to
be consumed by a computer that verifies correctness of the argu-
ment.

Conferences may offer authors to submit an artifact in conjunc-
tion with their paper. The purpose of an artifact is to provide
additional evidence for the claimed contributions of a submis-
sion, commonly in the form of a prototype implementation or
a machine-checked proof. A paper and its artifact can, to some
extent, be mixed using literate programming [Knuth, 1992]. When
using literate programming, a paper intersperses pieces of human
language with computer language, and the sources of the paper

[February 18, 2025 at 13:46 – version 4.2]

1.4 approach and thesis structure 9

can be consumed by a compiler or theorem prover to validate
that the programs and/or proofs are well-formed.

To evaluate the applicability of an idea design, papers may
resort to small case studies, where ideas are applied to more
involved examples compared to the minimal examples used to
illustrate ideas. Such evaluations are qualitative, and often appeal
to informal qualities of a solution, arguing that it is more usable,
modular, or elegant. Quantitative measures are sometimes used
for evaluation in papers too, if the merit of a piece of work
can be judged using more easily quantifiable attributes, such as
performance or code size. It is good practice for the sources of
prototypes and mechanized proofs to be publicly available, such
that other members can inspect and learn from them.

The individual chapters of thesis have been published at var-
ious programming language conferences, and thus follow the
general practice and methodology of research in the field of
programming languages as described above.

1.4 approach and thesis structure

The key technique for defining programming languages we em-
brace in this thesis are definitional interpreters [Reynolds, 1998].
The gist of the approach is to specify a language’s semantics by
defining an interpreter, and equating the dynamic semantics of
the language to the behavior of this interpreter. In the context of
definitional interpreters, it is important to distinguish the object
language, the language we are defining a semantics for, and the
meta language (sometimes also referred to as the host language),
which is the language in which we define the semantics.

Broadly speaking, there are three main approaches when it
comes to formally specifying a programming language’s behav-
ior:

1. axiomatic semantics [Hoare, 1969], in which we use logical
predicates make assertions about a program’s effect on the
program state,

[February 18, 2025 at 13:46 – version 4.2]

10 introduction

2. operational semantics [Plotkin, 2004], in which we use an
inductively-defined transition relation to describe how a
program evolves over time during execution, and

3. denotational semantics [Scott and Strachey, 1971], in which
we map programs onto a mathematical object that models
their semantics.

Definitional interpreters are most closely related to denotational
semantics, where the “mathematical” object that we use to model
programs of the object language is a program in the meta lan-
guage. Of course, the mathematical rigor of such a specification
depends on the meta languages used. A definitional interpreter
written in Haskell, for example, cannot be taken as a mathe-
matical specification of a language due to the presence of non-
termination, exceptions, and other unsafe language features such
as unsafePerformIO. When using a language like Agda, on the
other hand, the function that maps object language terms to
Agda programs must be total,10 hence we can view definitional10 Here, total means

that for every possible
input value, an output

will be computed in
finite time.

interpreters written in Agda as a denotational semantics that
denotes programs of the object language as terms in Agda’s type
theory. We highlight that for the purpose of defining reusable pro-
gramming language components, there is a balance to be struck
between these extremes. While mathematical rigor is crucial, so
is readability and usability of the specifications.

When working in a dependently typed language, such as Agda,
intrinsically-typed definitional interpreters [Augustsson and Carls-
son, 1999] offer a combination of readability and safety. The crux
of the technique is to encode a typing invariant in the abstract
syntax tree of the object language, such that it is only inhab-
ited by well-typed terms.11 The corresponding interpreter then11 The converse, more

traditional approach, is
to use extrinsic typing,
where well-typedness is

defined separately as a
predicate over an

untyped abstract syntax
type.

maps well-typed terms to values of the same type. While the
resulting definition looks like a “normal” interpreter, its type
is precise enough such that we can omit any code for dealing
with ill-formed terms. Due to totality of the function that imple-
ments the interpreter, the fact that it exists immediately implies
a type-safety theorem about the typing invariant encoded in the
abstract syntax. For these reasons intrinsically-typed interpreters

[February 18, 2025 at 13:46 – version 4.2]

1.4 approach and thesis structure 11

are an attractive candidate for specifying and verifying reusable
language components.

This thesis is organized into two parts that respectively support
the two hypotheses described in Section 1.2. In part I (Chap-
ters 2 and 3), we work on furthering the collection of techniques
available to languages designers for writing type-safe modular
language specifications in Agda. While this is possible, doing
things modularly does add some overhead to our definitions. In
part II (Chapters 4 and 5), we work towards a meta language
design that has modularity built in, reducing this overhead while
retaining type safety.

In Chapter 2, we discuss how to define modular intrinsically-
typed interpreters in Agda. We give a definition of intrinsically-
typed language fragments that specify the syntax and semantics of
a language component in a way that is type-safe by construction,
such that language fragments can be composed and reused freely
to build larger languages. While modular type safety proofs
have been studied before by Delaware et al. [2013a], Keuchel and
Schrijvers [2013], and Delaware et al. [2013c], their work focusses
on an extrinsic style of proofs, inducing considerable syntactic
overhead compared to the intrinsic approach.12 12 The amount of code

needed to specify a
verified language
component differs
roughly by one order of
magnitude.

In Chapter 3, we discuss how to define modular elaborations of
higher-order effects, along with modular reasoning principles that
allow us to verify that elaborations respect equational theories
of the effect(s) they implement. While there is a considerable
amount of existing work on (modular) higher-order effects (for
example, by Yang et al. [2022], Van den Berg et al. [2021a], and Wu
et al. [2014]), these focus on defining handlers for higher-order
effects directly. We take a slightly different approach by defining
the semantics of higher-order effects in terms of algebraic effects,
effectively following the approach by Plotkin and Pretnar [2009b]
of implementing higher-order effects as handlers, but adding an
additional syntactic layer to regain modularity.

In Chapter 4, we present the design of a meta language for
developing reusable programming language components, that
has built-in support for modular data types and effects. A crucial
feature of the language is that we can solve the expression prob-

[February 18, 2025 at 13:46 – version 4.2]

12 introduction

lem [Wadler, 1998] without resorting to embedding a data type’s
initial algebra semantics [Goguen, 1976], reducing the syntactic
overhead of modularity. Furthermore, it features a type-and-
effect system based on latent effects [Van den Berg et al., 2021a]
that support, among other things, �-abstraction as a user-defined
effect.

In Chapter 5 puts the modular data types presented in Chap-
ter 4 on formal footing by presenting a core calculus together
with a type system and semantics that features built-in support
for initial algebra semantics [Goguen, 1976]. Many familiar pro-
gramming abstractions for modularity can be encoded in the
calculus, such as modular data types and interpreters in the style
of Data Types á la Carte [Swierstra, 2008], algebraic effects and
handlers [Plotkin and Power, 2002, Plotkin and Pretnar, 2009a],
as well as various implementations of higher-order effects such
as Scoped Effects [Yang et al., 2022] or Hefty Algebras [Bach Poulsen
and Van der Rest, 2023]. While the calculus lacks any syntactical
conveniences for working with these constructions, it provides a
basis for understanding how modular data types can be added
to a language in a principled way.

Finally, in Chapter 6 we will look back on the work presented
in these two parts, and reflect on the contributions of the thesis
in light of the goals outlined in this introduction. Moreover, we
will discuss future work, and how to connect the contributions
presented in the two parts of this thesis.

1.5 origin of the chapters

The contents of this thesis correspond to previously published
work as follows.

Chapter 2 is based on:

Cas van der Rest, Casper Bach Poulsen, Arjen Rouvoet,
Eelco Visser and Peter D. Mosses. “Intrinsically-Typed
Definitional Interpreters à la Carte. In: Proceedings of the
ACM on Programming Languages 6.OOPSLA, 2022. DOI:
10.1145/3563355.

[February 18, 2025 at 13:46 – version 4.2]

1.5 origin of the chapters 13

Chapter 3 is based on:13 13 Upon invitation, a
journal version of the
paper, that extends the
original paper with
more principled
reasoning for
elaborations of
higher-order effects, has
been submitted to the
Journal of Functional
Programming. At the
time of writing, this
version of the paper is
still under review.

Casper Bach Poulsen and Cas van der Rest. “Hefty Al-
gebras: Modular Elaboration of Higher-Order Algebraic
Effects”. In: Proceedings of the ACM on Programming Lan-
guages 7.POPL, 2023. DOI: 10.1145/3571255.

Chapter 4 is based on:

Cas van der Rest and Casper Bach Poulsen. “Towards a
Language for Defining Reusable Programming Language
Components - (Project Paper). In: Selected Papers from the
23rd International Symposium in Trends in Functional Pro-
gramming, 2022. DOI: 10.1007/978-3-031-21314-4_2.

Chapter 5 is based on:14 14 An extended version
of the paper was
published on
arXiv [Van der Rest
and Bach Poulsen,
2023]

Cas van der Rest and Casper Bach Poulsen. “Types and
Semantics for Extensible Data Types”. In: Proceedings of
the 21st Asian Symposium on Programming Languages and
Systems, 2023. DOI: 10.1007/978-981-99-8311-7_3.

The contents of the papers that form Chapters 2 to 5 of this thesis
have been included verbatim in their corresponding chapter. At
the start and end of each chapter, a (small) unnumbered section
may have been added that discusses and reflects on the contents
of the paper in the context of this thesis, and/or discussing its
relation to the preceding and succeding chapters.

The author also contributed to the following papers:

Casper Bach Poulsen, Cas van der Rest, and Tom Schrijvers.
“Staged Effects and Handlers for Modular Languages with
Abstraction”. In: Workshop on Partial Evaluation and Program
Manipulation, 2021.

Cas van der Rest and Wouter Swierstra. “A Completely
Unique Account of Enumeration”. In: Proceedings of
the ACM on Programming Languages 6.ICFP, 2022. DOI:
10.1145/3547636.

[February 18, 2025 at 13:46 – version 4.2]

14 introduction

1.6 a note on artifacts

Part of the contributions in this thesis have been mechanized in
Agda. Specifically, the contributions outlined in part I of this the-
sis are supported by Agda developments that are publicly avail-
able [Van der Rest et al., 2022a, Van der Rest and Bach Poulsen,
2024]. While the code examples in Part I of this thesis are type-
checked, it is not the exact code contained in the accompanying
developments. For expositional purposes, definitions are occa-
sionally simplified, and (parts of) proofs and definitions may
have been omitted where they would clutter the explanation. The
code in the Agda development contains the full definitions.

For the language design presented in Chapter 4, there exists
a prototype interpreter written in Haskell [Hudak et al., 1992]
which is publicly available. The calculus design presented in
Chapter 5 has not been formalized or implemented yet.

[February 18, 2025 at 13:46 – version 4.2]

Part I

M O D U L A R S E M A N T I C S I N A G D A

[February 18, 2025 at 13:46 – version 4.2]

[February 18, 2025 at 13:46 – version 4.2]

2
I N T R I N S I C A L LY- T Y P E D D E F I N I T I O N A L
I N T E R P R E T E R S À L A C A RT E

preface

As noted in the introduction, intrinsically-typed definitional in-
terpreters appear to be an excellent candidate for specifying
reusable programming language components due to their con-
ciseness and readability. Although recent work by , Bach Poulsen
et al. [2018], and Rouvoet et al. [2020, 2021] has pushed the
technique far beyond the typical examples of interpreters for
simply-typed expression languages, they remain non-modular.
There are several hurdles to overcome before we can achieve
modularity of intrinsically-typed definitional interpreters, such
as how to maintain type-safety in light of extensibility, how en-
sure that components imposing different requirements on their
domain remain compatible, and how to alleviate the syntactic
and interpretive overhead incurred by modularity.

This chapter begins our journey towards modular intrinsically-
typed definitional interpreters by answering the first question:
how do we achieve modularity of intrinsically-typed interpreters
while maintaining type safety of the definitions? Since intrinsically-
typed interpreters can generally be defined as a catamorphism over
an (indexed) abstract syntax type, they are amenable to the usual
techniques for encoding type-safe modularity for data types in
functional languages (Section 2.2). However, in the presence of
potential future extensions of the type syntax, it turns out that
maintaining type safety in modular definitions requires some
additional care (Section 2.3).

17

[February 18, 2025 at 13:46 – version 4.2]

18 intrinsically-typed interpreters à la carte

2.1 introduction

Type safety is a crucial aspect of designing typed program-
ming languages. According to Pierce [2002], “a type system is
a tractable syntactic method for proving the absence of certain
program behaviors by classifying phrases according to the kinds
of values they compute.” The type safety property of a language
defines precisely what program behaviors its type system is sup-
posed to rule out. But it is challenging to define one’s type system
and interpreter15 in a way that it satisfies the intended type safety15 It is possible to define

the dynamic semantics
of a language in many
different ways. In this
paper, we assume that

the dynamic semantics
is given by an

interpreter.

property—or, put differently, that it rules out the “bad” program
behaviors it is supposed to. For this reason, programming lan-
guage researchers often rely on mathematical proofs to verify
that a type system and interpreter satisfies the type safety prop-
erty. However, constructing a type safety proof can be a labor
intensive and complex task.

Our research objective in this paper is to make it as easy as
possible for DSL developers to develop and verify the type safety
of typed domain-specific languages (DSLs). We propose two
sub-objectives that could address this goal together:

1. Support reuse of common programming language compo-
nents, so that DSL developers can focus on developing type
safe DSL components.

2. Make it easy to develop and debug type safe DSL compo-
nents by automating the task of verifying that a language
definition is type safe.

There is previous research that goes towards addressing these
sub-objectives individually, but no previous research that we are
aware of which provides a viable solution to both at the same
time.

Previous work by Keuchel and Schrijvers [2013] and Delaware
et al. [2013b,c] suggests a promising direction for addressing the
first sub-objective, by modularizing extrinsic type safety proofs
and interpreters. An extrinsic proof is an inductive proof on
the structure of the syntax or typing rules of a language. By
using the modular extrinsic proof techniques of Keuchel and

[February 18, 2025 at 13:46 – version 4.2]

2.1 introduction 19

Schrijvers [2013] and Delaware et al. [2013b,c], domain-specific
language designers can compose their interpreter, type system,
and type safety proof from pre-proven cases for off-the-shelf
components, allowing them to focus on defining and proving
the type safety of domain-specific components. However, for the
second sub-objective that we gave above, the extrinsic proof style
has a number of shortcomings. Most importantly, it is unclear
how to automate the task of constructing modular, extrinsic type
safety proof cases. We also argue that the extrinsic specification
style is not as easy to work with as the alternative intrinsically-
typed style which we discuss shortly. In particular, interpreters in
an extrinsic specification style contain redundant cases for bad
behavior that can never happen in a type safe language because
the type system rules it out. Furthermore, understanding when
and why an extrinsic type safety proof case does not hold, is key
to finding and fixing type safety errors. But it requires previous
experience with inductive proofs to identify what the error is.
Domain-specific language designers, however, usually do not
have the necessary experience to verify type safety.

A more concise and declarative style of verifying type safety is
to write an intrinsically-typed interpreter [Augustsson and Carls-
son, 1999] in a dependently-typed host language. Such interpreters
save language designers from having to read and write redun-
dant cases for ill-typed expressions, as the host language type
checker can automatically verify that these cases are unreachable
in practice. This results in shorter, more declarative specifications
that are safe-by-construction, in the sense that the type safety of
the interpreter follows from the well-typedness of its definition.
We do not have to establish type safety in a separate proof: the
interpreter is the type safety proof. Wadler et al. [2020] observe
that, in Agda [Norell, 2009], “extrinsically-typed terms require
about 1.6 times as much code as intrinsically-typed”, leading
them to suggest that “intrinsic typing is golden”.16 Another ap- 16 A pun referring to

the ratio in code size
between intrinsically
and extrinsically typed,
which approximates the
golden ratio.

peal of intrinsically-typed interpreters is that language designers
can debug type safety issues by using compiler errors produced
by the dependently-typed host language as a guide. While the
quality of compile time errors depends on the host language, it

[February 18, 2025 at 13:46 – version 4.2]

20 intrinsically-typed interpreters à la carte

data Ty : Set where
nat : Ty
bool : Ty

data Expr : Ty ! Set where
lit : N ! Expr nat
add : Expr nat! Expr nat! Expr nat
tt : Expr bool
ff : Expr bool
ite : Expr bool! Expr t!

Expr t! Expr t

Val : Ty ! Set
Val nat = N

Val bool = Bool

interp : Expr t! Val t
interp (lit n) = n
interp (add e1 e2) = interp e1 + interp e2
interp tt = true
interp ff = false
interp (ite e e1 e2)

= if interp e then interp e1
else interp e2

Figure 1: An
intrinsically-typed
interpreter for a small
expression language

does not require previous experience with inductive proof tech-
niques. This makes intrinsically-typed interpreters an attractive
approach to developing and debugging type safe languages, be-
cause it reduces the amount of work on behalf of DSL developers
by taking extrinsic proof obligations for type safety and making
them intrinsic to interpreter well-typing. However, intrinsically-
typed interpreters fail to address our first sub-objective, since
they do not in general support reuse.

In this paper we adapt and combine techniques for modular
meta-theory with the intrinsically-typed approach, and develop
a new notion of intrinsically-typed language fragments and language
fragment composition that makes it possible to reuse off-the-shelf
pre-verified components. Intrinsically-typed language fragments
are as concise and declarative and similarly easy to develop and
debug as plain, monolithic intrinsically-typed interpreters. Unlike
monolithic interpreters, language fragments can be developed
and checked in isolation and combined with other fragments to
compose type safe languages from reusable components.

[February 18, 2025 at 13:46 – version 4.2]

2.1 introduction 21

2.1.1 Background: Intrinsically-Typed Interpreters

Figure 1 shows an intrinsically-typed interpreter for a simple lan-
guage with arithmetic (lit, add) and Boolean (tt, ff, ite) expressions,
implemented in Agda [Norell, 2009]. It consists of:

1. a data type of object language types, Ty : Set;

2. a function that maps each object language type to a type,
Val : Ty ! Set;

3. an indexed data type representing the well-typed object
language expressions, Expr : Ty ! Set;

4. an index-preserving evaluation function that embeds a type
safety theorem by mapping well-typed expression to a
value of the same type, interp : Expr t ! Val t (i.e., “well-
typed expressions cannot go wrong”, Milner [1978]).

The key ingredient that allows Agda to verify that the interpreter
in Figure 1 is type safe is dependent pattern matching [Cockx, 2017,
Coquand, 1992], enabling Agda to infer a precise type for each
variable bound by a pattern match clause. For instance, in the
clause interp (add e1 e2) = . . . , Agda infers that e1 and e2 have
type Expr nat in the right hand side of the definition. Indeed, if e1
or e2 had any other type, the pattern match would be ill-formed
according to the definition of Expr. Since e1 and e2 : Expr nat,
Agda can deduce that the recursive calls in interp e1 + interp e2
must yield natural numbers, as the return type of the calls, Val nat,
normalizes to N. Thus no error handling of type mismatching is
needed: thanks to Agda’s type checker we know that this will not
happen, and we do not have to spell out any redundant cases for
going wrong.

2.1.2 Challenge: Intrinsically-Typed Programming Language Frag-
ments

The interpreter in Figure 1 mixes arithmetic and Boolean expres-
sions. If we want to extend or reuse (parts of) this language, we

[February 18, 2025 at 13:46 – version 4.2]

22 intrinsically-typed interpreters à la carte

data Ty : Set where
{- ...1 -}

nat : Ty

Val : Ty ! Set
{- ...2 -}

Val nat = N

data Expr : Ty ! Set where
{- ...3 -}

lit : N ! Expr nat
add : Expr nat! Expr nat! Expr nat

interp : Expr t! Val t
{- ...4 -}

interp (lit n) = n
interp (add e1 e2) = interp e1 + interp e2

data Ty : Set where
{- ...5 -}

bool : Ty

Val : Ty ! Set
{- ...6 -}

Val bool = Bool

data Expr : Ty ! Set where
{- ...7 -}

tt ff : Expr bool
ite : Expr bool! Expr t! Expr t! Expr t

interp : Expr t! Val t
{- ...8 -}

interp tt = true
interp ff = false
interp (ite e e1 e2) = if interp e then interp e1

else interp e2

Figure 2: Two
intrinsically-typed
interpreters for arith-
metic expressions
(left) and Boolean
expressions (right).

have no option but to modify or copy-paste existing code. A
better approach is to assemble interpreters from reusable com-
ponents. Figure 2 provides an informal illustration of how we
might define and check such reusable components in isolation,
and compose them with other fragments, to incrementally de-
velop a verified and type safe interpreter. We can compose such
fragments by concatenating their constructor declarations and
function clauses. The Agda comments {- ...i -} indicate program
points where new constructors or clauses will be inserted during
composition. For example, we recover the language from Fig-
ure 1 by inserting the constructors of Ty (right) at {- ...1 -}, the
clauses of Val (right) at {- ...2 -}, and so forth. Throughout this
paper we develop a semantics of intrinsically-typed language
fragments that supports this kind of composition, without having
to re-type-check existing language fragments.

[February 18, 2025 at 13:46 – version 4.2]

2.1 introduction 23

The challenge with defining fragment composition is that not
all extensions are well behaved. In particular, extensions that
change the canonical forms of a type (i.e., removing or adding a
new value constructor for an existing type) are problematic. For
example, if we add Val bool = Maybe Bool at the {- ...6 -} position
in Figure 2, then the interp (ite e e1 e2) case on the right becomes
ill-typed. If we were to re-type-check the composed definition,
Agda would correctly reject this extended interpreter for being
ill-typed. Such re-checking is, however, contrary to the goal of
reusing pre-verified components. This raises the question: under
which conditions is language fragment composition guaranteed
to be well-typed?

This paper answers this question by introducing a subtyping
relation for witnessing that canonical forms are preserved when
values are extended. That is, the set of constructors for a value
of a given type never changes. By using this subtyping relation
in our definition of language fragments and language fragment
composition, we automatically rule out bad extensions, such as
the Val bool = Maybe Bool extension discussed above.

2.1.3 Contributions

Working in Agda17, we make the following technical contribu- 17 The code in his paper
is available in the
accompanying
artifact [Van der Rest
et al., 2022a].

tions:

• We extend (in Section 2.3) the techniques (which we recall
in Section 2.2) from data types à la carte [Swierstra, 2008] to
intrinsically-typed interpreters, and introduce a subtyping
relation for canonical forms. This relation allows us to
define cases of modular intrinsically-typed interpreters in
a way that supports type safe composition.

• We introduce (in Section 2.4) intrinsically-typed language
fragments, which bundle the syntax and semantics of one
or more language constructs. Using a general type union,
we define canonical form unions to support composition of
language fragments with overlapping values.

[February 18, 2025 at 13:46 – version 4.2]

24 intrinsically-typed interpreters à la carte

• We generalize (in Section 2.5) our framework from Agda’s
Set to a broader class of semantic domains. With this gener-
alization, we can modularly define languages with effects
such as name binding, exceptions, and mutable state, pro-
vided that we choose a semantic domain that supports
these effects upfront.

• We demonstrate (in Section 2.5) how language fragments
support reuse by developing a small library of pre-verified
language components, and reusing these to compose differ-
ent languages.

These contributions demonstrate that modern dependently typed
languages such as Agda or Idris can take us far toward address-
ing the two sub-objectives from the introductory paragraphs of
this paper. However, it would be an overstatement to say that our
contributions address the research objective of making it “as easy
as possible for DSL developers to develop and verify the type
safety of typed domain-specific languages (DSLs)”. Our long-
term ambition is to take the model that underpins our generic
Agda framework, and implement it in a new meta-language that
lowers the barrier for entry, and allows language designers to
build verified DSLs from reusable components. The language
fragment composition operation that we introduce in Section 2.4
provides a promising model for how language component reuse
could work in such a meta-language.

2.2 data types à la carte

We recall how data types à la carte [Swierstra, 2008] lets us define
open data types and functions. The remaining sections of this
paper extend and build upon this framework. Our exposition
closely follows the original exposition by Swierstra, with one
difference: we encode types à la carte in Agda using contain-
ers [Abbott et al., 2005a, Altenkirch et al., 2015]. 18

18 The reason we use
containers instead of the
signature functors that

Swierstra [2008] uses is
that the fixpoint of

signature functors is
not strictly positive and
hence rejected by Agda

(and other
dependently-typed

languages). The idea of
using containers to

implement data types à
la carte in a

dependently-typed
language is due to

Keuchel and Schrijvers
[2013].

[February 18, 2025 at 13:46 – version 4.2]

https://agda.readthedocs.io/en/v2.6.1.3/language/data-types.html#strict-positivity

2.2 data types à la carte 25

2.2.1 Composing Data Types

The idea behind data types à la carte is to encode data type
definitions as data. By treating data type definitions as data we
can explicitly manipulate them, but also recover their meaning
by mapping to Agda data types. We explain how to encode data
type definitions as signatures that can be mapped to plain Agda
data types (Section 2.2.1.1), how to compose them using signature
composition (Section 2.2.1.2), and how to define open data type
constructors using signature subtyping (Section 2.2.1.3).

2.2.1.1 Signatures

A signature describes a set of data type constructors. The follow-
ing record type in Agda defines a type of signatures. We dub the
record type Signature, but it corresponds to what is commonly
known as a finitary container [Abbott et al., 2005a, Altenkirch
et al., 2015].19

19 Most sections of this
paper could also be
defined in terms of plain
containers whose Arity

is not restricted to be
finite.

We use finite containers because they make the
presentation of data types more uniform (sub-expressions are
always given by a vector as we illustrate next). We could have
used

record Signature : Set where
constructor _B_
field Symbols : Set

Arity : Symbols! N

Signature records can be constructed using _B_20

20 The underscores in
the name _B_ indicate
the argument positions
of the mixfix operator.

, as indicated
by the keyword “constructor”. Such records comprise a set21

21
Set is the type of

types in Agda. To rule
out inconsistencies,
Agda has an infinite
hierarchy of Sets (i.e.,
Set : Set1 : . . .), and
the Signature type that
we define really lives in
Set1, since one of its
fields is itself a Set. For
presentation purposes,
we abstract from
universe levels and
write Set everywhere.

of
constructor Symbols, and a function that associates an Arity (given
by a natural number) with each constructor symbol.

To illustrate how signatures encode inductive data types, we
compare the plain inductive definitions (top) with their encoding
as signatures (bottom). Starting with arithmetic expressions: 22

22 The notation tt

ff : BoolExpr is
syntactic sugar for two
separate constructor
declarations
tt : BoolExpr and
ff : BoolExpr.

data ArithExpr : Set where
lit : N ! ArithExpr
add : ArithExpr ! ArithExpr ! ArithExpr

[February 18, 2025 at 13:46 – version 4.2]

26 intrinsically-typed interpreters à la carte

data ArithExprSymbols : Set where
lit : N ! ArithExprSymbols
add : ArithExprSymbols

ArithExpr⌃ = ArithExprSymbols B (� where
(lit n)! 0; add! 2)

And Boolean expressions:

data BoolExpr : Set where
tt ff : BoolExpr
ite : (e e1 e2 : BoolExpr)! BoolExpr

data BoolExprSymbols : Set where
tt ff : BoolExprSymbols
ite : BoolExprSymbols

BoolExpr⌃ = BoolExprSymbols B (� where
ite! 3; tt! 0; ff ! 0)

We recover an inductive data type from a signature by taking a
fixpoint of the corresponding signature functor. The function J_K
defines this functor, and the type µ its fixpoint—that is, the type
of syntax trees whose constructors are given by �. 2323 The notation

⌃[x : A] (B x) denotes
a dependent pair of a

value x : A and a
value of type B x for
some B : A! Set.

J_K : Signature! (Set! Set)
J � K A = ⌃[s : Symbols �] (Vec A (Arity � s))

data µ (� : Signature) : Set where
h_i : J � K (µ �)! µ �

Taking the least fixpoint of the ArithExpr⌃ signature yields a type
that is equivalent to ArithExpr:

example0 : ArithExpr
example0 = lit 42

example00 : µ ArithExpr⌃
example00 = h lit 42 , [] i

example1 : ArithExpr
example1 = add (lit 11) (lit 31)

[February 18, 2025 at 13:46 – version 4.2]

2.2 data types à la carte 27

example10 : µ ArithExpr⌃
example10 = h add , h lit 11 , [] i :: h lit 31 , [] i :: [] i

2.2.1.2 Signature Composition

Signatures can be composed by taking the disjoint union of
their symbols and arities. The function :+: defines this disjoint
composition using the usual sum type (]):

:+: : Signature! Signature! Signature
�1 :+: �2 = (Symbols �1] Symbols �2) B (� where

(inj1 s)! Arity �1 s
(inj2 s)! Arity �2 s)

data _]_ (A B : Set) : Set where
inj1 : A! A] B
inj2 : B ! A] B

Using disjoint signature composition we can define signatures
in isolation and compose them without having to re-check them.
For example, we can compose the ArithExpr⌃ signature with
BoolExpr⌃, accommodating expressions that mix arithmetic and
Boolean expressions. For example, the term below encodes a
simple if-then-else expression (ite tt 42 0):

example2 : µ (ArithExpr⌃ :+: BoolExpr⌃)
example2 =
h inj2 ite ,
h inj2 tt , [] i

:: h inj1 (lit 42) , [] i
:: h inj1 (lit 0) , [] i
:: [] i

The repeated applications of inji make working with composed
signatures cumbersome. Following Swierstra [2008], we address
this using signature subtyping and smart constructors.

2.2.1.3 Signature Subtyping and Smart Constructors

Smart constructors construct instances of a data type whose
full set of constructors is left open. For example, the following

[February 18, 2025 at 13:46 – version 4.2]

28 intrinsically-typed interpreters à la carte

function constructs a literal in the syntax tree of any signature �
that contains the symbol/arity pairs of ArithExpr⌃:2424 The double braces

{| . . . |} declare an
instance parameter.

Instance parameters are
similar to type class

constraints in Haskell
or implicit parameters

in Scala: when invoking
a function with an

instance parameter, an
automatic search is

performed during type
checking time at the

call-site of the function.
The search will either
automatically find an
instance that has the
correct type, or cause

type checking to fail if
Agda cannot find an

instance parameter of
the expected type.

lit0 : {| ArithExpr⌃ � � |}! N ! µ �

The � in the type of lit0 is thus decided by the context that it is
used in, enabling us to flexibly reuse lit0 in different contexts. The
source of this flexibility is signature subtyping:25

25 The curly braces in
proj-inj : {x : F

A} ! . . . are implicit
function arguments

that Agda will attempt
to automatically infer
when we construct a

record element. The ⌘
type is propositional

equality.

record _�_ (�1 �2 : Signature) : Set where
field inj : J �1 K A! J �2 K A

proj : J �2 K A! Maybe (J �1 K A)
proj-inj : {x : J �1 K A}

! proj (inj x) ⌘ just x
inj-proj : {x : J �1 K A} {y : J �2 K A}

! proj y ⌘ just x! inj x ⌘ y

The type �1 � �2 witnesses that it is always possible to inject
elements in the interpretation of �1 into the interpretation of �2,
whereas the converse projection is only partial. The proj-inj and
inj-proj fields establishes that injection and projection are partial
inverses.

It is possible to automatically search for injections into co-
products using instance parameters [Devriese and Piessens, 2011].
We elide the definition of the necessary instances, but they are en-
tirely analogous to the instances found in the original data types
à la carte framework [Swierstra, 2008]. The code accompanying
this paper also contains the implementation.

Using signature subtyping we can implement the smart con-
structor for lit0 mentioned above. We use the smart inject function
on below to implement a smart constructor for literals:

inject : {| �1 � �2 |}! J �1 K (µ �2)! µ �2

inject x = h inj x i

lit0 : {| ArithExpr⌃ � � |}! N ! µ �

lit0 n = inject (lit n , [])

By defining similar smart constructors for Boolean expressions,
example2 from above can be implemented more concisely as
follows:

[February 18, 2025 at 13:46 – version 4.2]

2.2 data types à la carte 29

example20 : µ (ArithExpr⌃ :+: BoolExpr⌃)
example20 = ite0 tt0 (lit0 42) (lit0 0)

2.2.2 Composing Functions

We recall how to define a function by cases using data types à la
carte.

2.2.2.1 Algebras

The function fold transforms a tree of type µ � into a value of
type A:

fold : (J � K A! A)! µ �! A

The parameter of type (J � K A ! A) is called an algebra, and
determines how to turn a constructor whose sub-trees are already
folded into a value of type A, into a value of type A. We abbreviate
the type of algebras using the following alias:

Algebra : Signature! Set! Set
Algebra � A = J � K A! A

ArithAlg : Algebra ArithExpr⌃ N

ArithAlg (lit n , []) = n
ArithAlg (add , n1 :: n2 :: []) = n1 + n2

The ArithAlg function defines an algebra that evaluates arithmetic
expressions to natural numbers. The patterns n and m bound
by matching on the add constructor are not expressions, but
rather the numbers that result from evaluating the expressions
in those positions. The function fold takes care of evaluating
sub-expressions, and is defined as follows:

mutual
fold : Algebra � A! µ �! A
fold f h s , v i = f (s , map-fold f v)

map-fold : Algebra � A! Vec (µ �) n! Vec A n

[February 18, 2025 at 13:46 – version 4.2]

30 intrinsically-typed interpreters à la carte

map-fold f [] = []
map-fold f (x :: v) = fold f x :: map-fold f v

To pass Agda’s termination checker, we must inline the definition
of map for lists (map-fold), which applies fold to recursive sub-
expressions.

2.2.2.2 Algebra Composition

We can sum algebras using the � operator given below.

� : Algebra �1 A! Algebra �2 A! Algebra (�1 :+: �2) A
(f � g) (inj1 s , v) = f (s , v)
(f � g) (inj2 s , v) = g (s , v)

Summing two algebras over two signatures �1 and �2 thus yields
a larger algebra for the signature composition �1 :+: �2: This
algebra sum operator only works for algebras with the same
carrier type A : Set. This implies that the ArithAlg algebra can
only be composed with algebras that also use N as their carrier.
This excludes, for example, the composition of ArithAlg with an
algebra for Boolean expressions with Bool as its carrier type.

We can allow such compositions by defining algebras with an
open carrier type; i.e., using signature subtyping. The idea is to
represent values as signatures, and use signature subtyping to
assert what value constructors each algebra at least requires; e.g.:

ArithAlg0 : {| NatVal⌃ � � |}! {| StuckVal⌃ � � |}

! Algebra ArithExpr⌃ (µ �)

The carrier of this algebra is the fixpoint of some signature �,
about which we only know that it contains at least the construc-
tors described by NatVal⌃ and StuckVal⌃. As the names suggest,
NatVal⌃ describes natural number values, and StuckVal⌃ repre-
sents a stuck value. Stuck values are needed because the recursive
positions of ArithExpr⌃ are not intrinsically guaranteed to re-
turn numbers, and if they do not, interpretation gets stuck. By
defining a similar algebra for BoolExpr⌃, we can assemble an
interpreter that we can use to evaluate example20:

[February 18, 2025 at 13:46 – version 4.2]

2.2 data types à la carte 31

interpArithBool : µ (ArithExpr⌃ :+: BoolExpr⌃)
! µ (NatVal⌃ :+: BoolVal⌃ :+: StuckVal⌃)

interpArithBool = fold (ArithAlg0 � BoolAlg)

test : interpArithBool example20

⌘ inject (nat 42 , [])
test = refl

2.2.3 Discussion

The interpreters that we can write using the techniques shown
in this section are inherently weakly typed. This weak typing
means that we must define values as a data type with separate
constructors for each kind of a value. As a result, the algebras we
define describe partial functions, returning stuck if a recursively
evaluated value is not tagged with the right constructor. By con-
trast, the intrinsically-typed interpreter shown in the introduction
is tagless: Agda uses the type index to figure out what kind of
value we are dealing with, allowing us to work with bare values
instead. As a result this interpreter is type-safe by construction.
To define such interpreters modularly we lift data types à la carte
to indexed types, defining the following types in a composable
way:

Ty : Set
Val : Ty ! Set
Expr : Ty ! Set
interp : 8 {t}! Expr t! Val t

The key challenge is that the clauses of interp may use dependent
pattern matching on values Val t at an index type t : Ty. If we
know exactly what t is, we only have to consider the cases that
Val associates with that type. But if Val and Ty are open-ended,
how do we know that these will remain to be the only possible
values for t?

The answer to this question is to ensure that values have canon-
ical forms. Canonical forms lemmas are a widely-used technique

[February 18, 2025 at 13:46 – version 4.2]

32 intrinsically-typed interpreters à la carte

for making type safety proofs robust under extension and com-
position [Wright and Felleisen, 1994, Pierce, 2002, Delaware et al.,
2013b]. In the next section we show that this technique, in con-
junction with indexed data types à la carte, provides exactly the
abstraction we need to encode composable intrinsically-typed
interpreters.

2.3 indexed data types à la carte , for defining com-
posable intrinsically-typed interpreters

We extend the data types à la carte framework to indexed data
types, and encode intrinsically-typed interpreters in this framework
as follows:

• We encode types Ty : Set as a plain signature (Section 2.3.1).

• We encode values Val : Ty ! Set as an algebra over object
language type signatures (Section 2.3.2).

• We encode expressions Expr : Ty ! Set as an indexed signa-
ture with an open index type (Section 2.3.3) such that we can
add new expression- or type constructors, without having
to modify or re-check existing expression constructors.

• We encode interpreters interp : Expr t! Val t as an indexed
algebra over the indexed signatures of object language ex-
pressions (Section 2.3.4). These indexed algebras have an
open carrier type and an open index type, allowing us to can
add new expression constructors, interpreter cases, types,
and values, without modifying or re-checking existing code.
It is crucial that the carrier of these indexed algebras is only
open to extensions that preserve canonical forms.

2.3.1 Composing Index Types

Since the index type Ty : Set is a plain data type, we can use plain
data types à la carte to encode it as a signature. For example,
below on the left is a data type NatTy representing a notion of

[February 18, 2025 at 13:46 – version 4.2]

2.3 indexed data types à la carte 33

object language type with a single type constructor, and on the
right is its signature encoding:

data NatTy : Set where
nat : NatTy

data NatTyShape : Set where
nat : NatTyShape

NatTy⌃ = NatTyShape B (� _! 0)

By similarly encoding a Boolean type constructor as a signature
BoolTy⌃, we can compose a signature that encodes the object
language types of the interpreter from Figure 1:

ArithBoolTy⌃ = NatTy⌃ :+: BoolTy⌃

2.3.2 Composing Intrinsically-Typed Values

The intrinsically-typed interpreter in Figure 1 defines Val : Ty! Set
as a function. This function maps object language types to their
canonical forms (i.e., the set of possible value constructors) of
that type. (Note that it is also possible to model Val as a data
type, but a benefit of modeling Val as a function is that values
are tag-less [Augustsson and Carlsson, 1999], which avoids the
need to tag and untag values in the interpreter.) Since Ty : Set
is encoded as a signature, we can encode Val as an algebra over
that signature. The following algebras define the canonical forms
of nat and bool:

NatVal : Algebra NatTy⌃ Set
NatVal (nat , []) = N

BoolVal : Algebra BoolTy⌃ Set
BoolVal (bool , []) = Bool

We can compose these algebras using the algebra sum operation
from Section 2.2.2:

ArithBoolVal : Algebra ArithBoolTy⌃ Set
ArithBoolVal = NatVal � BoolVal

Folding ArithBoolVal over ArithBoolTy⌃ yields a function that is
isomorphic to Val from Figure 1.

[February 18, 2025 at 13:46 – version 4.2]

34 intrinsically-typed interpreters à la carte

2.3.3 Composing Intrinsically-Typed Expressions

The expressions of the intrinsically-typed interpreter in Figure 1
are defined as an indexed data type Expr : Ty ! Set whose index
type is Ty. To define this type in a composable way, we lift the
notion of signature from the data types à la carte framework dis-
cussed in Section 2.2 to indexed signatures, and obtain a framework
for indexed data types à la carte.

2.3.3.1 Indexed Signatures

Below is the type of indexed signatures that describe I-indexed
data types. We dub this type ISignature I, but this type is also
commonly known as a finitary indexed container [Altenkirch et al.,
2015]:

record ISignature (I : Set) : Set1 where
constructor _I_
field ISymbols : I ! Set

Indices : {i : I}! ISymbols i! List I

The ISymbols field relates each index to a set of symbols, and
the Indices field associates the symbols at each index with a list
whose length represents the arity of each constructor symbol,
and whose elements describe what the index (of type I) of each
recursive position is. We can interpret indexed signatures as
indexed data types, just as we interpreted signatures as plain
data types (Section 2.2):

IJ_K : ISignature I ! (I ! Set)! (I ! Set)
IJ ⇣ K P i = ⌃[s : ISymbols ⇣ i] (All P (Indices ⇣ s))

data Iµ (⇣ : ISignature I) : I ! Set where
Ih_i : {i : I}! IJ ⇣ K (Iµ ⇣) i! Iµ ⇣ i

The implementation of the IJ_K function uses the following All
relation on lists, which asserts that each element in a given List I
satisfies a given proposition P : I ! Set:

data All (P : I ! Set) : List I ! Set where
[] : All P []
:: : {i : I} {xs : List I}! P i! All P xs! All P (i :: xs)

[February 18, 2025 at 13:46 – version 4.2]

2.3 indexed data types à la carte 35

We can think of IJ ⇣ K as mapping an indexed signature ⇣ to its
corresponding signature functor on I-indexed types, similarly to
how J � K maps a plain signature to its corresponding signature
functor on plain types.

2.3.3.2 Indexed Signature Composition

Two indexed signatures with the same index type I can be
summed into a larger signature that comprises the shapes and
indices of both:

:++: : ISignature I ! ISignature I ! ISignature I
ISymbols (⇣1 :++: ⇣2) i = ISymbols ⇣1 i] ISymbols ⇣2 i
Indices (⇣1 :++: ⇣2) (inj1 s) = Indices ⇣1 s
Indices (⇣1 :++: ⇣2) (inj2 s) = Indices ⇣2 s

Using these ingredients we can now define composable indexed
expression types corresponding to the Expr : Ty ! Set from
Figure 1 where the index type Ty is fixed. However, since new
language fragments may introduce new object language type
constructors, we need to model Ty in a way that allows such
extensions.

2.3.3.3 Indexed Signatures with Open Index Types

We can define signatures whose index type is open by using
the subtyping relation _�_ (Section 2.2.1.3) to witness a lower
bound on the index type, just like we did in Section 2.2.2.2.
The indexed signature below thus describes intrinsically-typed
arithmetic expressions whose type constructors are described by
any signature � that contains at least the constructors described
by NatTy⌃:

data IArithExprSymbols {| _ : NatTy⌃ � � |} : µ �! Set where
val : N ! IArithExprSymbols (inject (nat , []))
add : IArithExprSymbols (inject (nat , []))

IArithExpr⌃ : {| _ : NatTy⌃ � � |}! ISignature (µ �)
IArithExpr⌃ = IArithExprSymbols I (� where

(val _)! []
add ! inject (nat , []) :: inject (nat , []) :: [])

[February 18, 2025 at 13:46 – version 4.2]

36 intrinsically-typed interpreters à la carte

By defining Boolean expressions in a similar manner, we can
compose indexed signatures with open index types:

IArithBoolExpr⌃ : {| _ : NatTy⌃ � � |}! {| _ : BoolTy⌃ � � |}

! ISignature (µ �)
IArithBoolExpr⌃ = IArithExpr⌃ :++: IBoolExpr⌃

By defining a similar subtyping relation for indexed signatures as
we did for plain signatures, we can define smart constructors for
indexed types, similarly to how we defined smart constructors
for plain types in Section 2.2.1.3. We elide this relation for brevity,
and refer the interested reader to the code accompanying the
paper where it can be found.

2.3.4 Composing Index-Preserving Functions

Our goal is to use indexed algebras to encode interpreters of type
interp : Expr t! Val t whose index type Ty : Set and value type
Val : Ty ! Set are open. That is, we should define interp in a way
that we can add new constructors to Ty : Set and Val : Ty ! Set
and ensure that pattern matches inside interp on values remain
exhaustive. We realize this goal by defining a subtyping relation
in Section 2.3.4.2 that characterizes such safe extensions. But first,
we need indexed algebras.

2.3.4.1 Indexed Algebras

We can generically fold a tree of type Iµ ⇣ i into a value of type
P i using the following function, where P : I ! Set:

Ifold : 8[IJ ⇣ K P) P]! 8[Iµ ⇣) P]

Its implementation is analogous to the implementation of fold
from Section 2.2.2.1, and its type uses the following abbreviations
for indexed types (both from the Agda Standard Library26):26

https://github.com/

agda/agda-stdlib 8[_] : (I ! Set)! Set
8[_] {I} P = {i : I}! P i

[February 18, 2025 at 13:46 – version 4.2]

https://github.com/agda/agda-stdlib
https://github.com/agda/agda-stdlib

2.3 indexed data types à la carte 37

) : (I ! Set)! (I ! Set)! (I ! Set)
(P) Q) i = P i! Q i

We call the function parameter 8[IJ ⇣ K P) P] an indexed algebra,
which we will abbreviate using the following alias:

IAlgebra : (⇣ : ISignature I) (P : I ! Set)! Set
IAlgebra ⇣ P = 8[IJ ⇣ K P) P]

Just like plain algebras, indexed algebras are closed under in-
dexed signature sums:

:�: : IAlgebra ⇣1 P! IAlgebra ⇣2 P
! IAlgebra (⇣1 :++: ⇣2) P

(f :�: g) (inj1 s , a) = f (s , a)
(f :�: g) (inj2 s , a) = g (s , a)

This sum operation assumes that both summands have the same
carrier, P. To sum indexed algebras corresponding to intrinsically-
typed interpreters with different notions of types and values, we
need a subtyping relation that witnesses what values (or canonical
forms) a carrier type at least has.

2.3.4.2 Canonical Forms Subtyping

Our goal is to define indexed algebras with open carrier types in
the style illustrated by interpArithAlg below:

interpArithAlg : {| _ : NatVal ✓ W |}

! IAlgebra IArithExpr⌃ (fold W)
interpArithAlg (val n , []) = " n
interpArithAlg (add , n1 :: n2 :: []) = " (# n1 + # n2)

Here, _✓_ denotes value subtyping. In order to define com-
posable intrinsically-typed interpreters, this subtyping relation
should witness that we can safely convert between NatVal and
W. In the definition of interpArith, we use " to represent a safe
“upcast” from NatVal to W, and # to represent a safe “downcast”
from W to NatVal. We define _✓_ in terms of a type isomorphism:

record _$_ (A B : Set) : Set where
field inj$: A! B

[February 18, 2025 at 13:46 – version 4.2]

38 intrinsically-typed interpreters à la carte

proj$: B! A
proj-inj$: {a : A}! proj$ (inj$ a) ⌘ a
inj-proj$: {b : B}! inj$ (proj$ b) ⌘ b

The inj$ and proj$ fields lets us convert any A into a B and vice
versa. The proj-inj$ and inj-proj$ fields restrict inj$ and proj$
to proper inverses.

Intuitively, a witness of the form W1 ✓W2 tells us that W1 and
W2 define the same values for the same types, but W2 may define
values for more types than W1.

record _✓_ (W1 : Algebra �1 Set)
(W2 : Algebra �2 Set) : Set where

field {| �-type |} : �1 � �2
canonical : {V : T ! Set}! (t : J �1 K T)

! W1 (fmap V t)$ W2 (fmap V (inj t))

The �-type27 field establishes that W2 is defined on the same (or27 By wrapping the
�-type field of this

record type in instance
argument brackets,
instance parameter

search will be able to
automatically resolve

this field projection. For
example, the inj field

projection that occurs in
the canonical field of

the _✓_ record type is
implicitly projecting

from �-type.

more) types as W1. The canonical field asserts that W1 and W2

define the same value (up to isomorphism) for every shared type.
We express this fact by requiring that W1 and W2 are isomorphic
for all shared types t, invariant of the type of its sub-trees (T), or
the way sub-trees are mapped to values (V). To apply V to the
sub-trees in t, we use the function fmap:

fmap : (f : A! B)! J � K A! J � K B
fmap f (s , v) = (s , map f v)

Finally, we can implement the safe up-casting (") and down-
casting (#) operations:

" : {| _ : V ✓ W |}! V (fmap (fold W) t)! fold W (inject t)
: {| _ : V ✓ W |}! fold W (inject t)! V (fmap (fold W) t)

The implementation of these function uses the type isomorphism
in the canonical field of the {| _ : V ✓ W |} instance argument
to safely convert between the values computed by the sub- and
super algebras. Comparing with Section 2.2, we can think of "
as the intrinsically-typed counterpart to inject, and of # as the
intrinsically-typed counterpart to a weakly-typed projection func-
tion. The crucial difference is that # is a total function, whereas
project may return nothing.

[February 18, 2025 at 13:46 – version 4.2]

2.3 indexed data types à la carte 39

2.3.4.3 Indexed Algebra Composition

Indexed algebras can be composed in the same way as plain alge-
bras. For example, we can compose interpArithAlg with the follow-
ing indexed algebra for evaluating intrinsically-typed Boolean
expressions:

interpBoolAlg : {| _ : BoolVal ✓ W |}

! IAlgebra IBoolExpr⌃ (fold W)
interpBoolAlg (tt , []) = " true
interpBoolAlg (ff , []) = " true
interpBoolAlg (ite , v :: v1 :: v2 :: []) = if # v then v1 else v2

interpArithBoolAlg : {| _ : NatVal ✓ W |}! {| _ : BoolVal ✓ W |}

! IAlgebra IArithBoolExpr⌃ (fold W)
interpArithBoolAlg = interpArithAlg :�: interpBoolAlg

Using these indexed algebras, we can now evaluate expressions
given by the fixpoint of an indexed signature, using Ifold:

Ifold : IAlgebra ⇣ P! 8[Iµ ⇣) P]

This yields an interpreter that is analogous to the interpreter
from Figure 1 in the introduction:

interpArithBool : Iµ IArithBoolExpr⌃ t
! fold (NatVal � BoolVal) t

interpArithBool = Ifold interpArithBoolAlg

Unlike the interpreter from the introduction, this interpreter is
assembled from separately-defined, reusable components—i.e.,
interpArithAlg and interpBoolAlg.

2.3.5 Discussion

This section showed how to assemble intrinsically-typed inter-
preters using indexed data types à la carte and canonical forms
subtyping. While this approach allows us to assemble languages,
the notion of language fragment that we illustrated in Figure 2 in
the introduction remains informal. There are three reasons why it

[February 18, 2025 at 13:46 – version 4.2]

40 intrinsically-typed interpreters à la carte

is useful to define language fragments as a first-class abstraction
instead. The first reason is that it would allow language designers
to compose languages using a single, uniform notion of language
fragment composition, instead of the four we used in this section
to compose respectively types, values, expressions, and inter-
preters. The second reason is that intrinsically-typed interpreters
as defined in this section are not closed under composition, since
indexed algebra composition “grows” the number of canonical
forms subtype constraints, as interpArithBoolAlg illustrates. The
last reason is that it is possible for interpreters to make conflicting
assumptions about values, as we illustrate below.

Consider the encoding below of an intrinsically-typed inter-
preter which uses ternary Booleans, akin to the Val bool = Maybe
Bool clause discussed in Section 2.1.2. The null expression below
constructs the third kind of Boolean value:

TernaryBoolVal : Algebra BoolTy⌃ Set
TernaryBoolVal (bool , []) = Maybe Bool

data INullExprShape {| _ : BoolTy⌃ � � |} : µ �! Set where
null : INullExprShape (inject (bool , []))

INullExpr⌃ : {| BoolTy⌃ � � |}! ISignature (µ �)
INullExpr⌃ = INullExprShape I � _! []

interpNullAlg : {| _ : TernaryBoolVal ✓ W |}

! IAlgebra INullExpr⌃ (fold W)
interpNullAlg (null , []) = " nothing

Using algebra composition, we can compose interpBoolAlg with
interpNullAlg, growing the number of subtype constraints:

- Causes unsolved instances, even with

- overlapping-instances enabled!

{- badAlgebra : {| _ : BoolVal ✓ V |}

! {| _ : TernaryBoolVal ✓ V |}

! IAlgebra

(IBoolExpr⌃ :++: INullExpr⌃)

(fold V)

badAlgebra = interpBoolAlg :�: interpNullAlg -}

[February 18, 2025 at 13:46 – version 4.2]

2.4 intrinsically-typed language fragments 41

This is unsatisfactory: the subtype constraints of badAlgebra rep-
resent an unsound identification of types, because BoolVal and
TernaryBoolVal define different canonical forms for the bool type.
In other words, the subtype constraints conflict—i.e., cannot be
proven—for any V : Algebra BoolTy⌃ Set. The next section intro-
duces intrinsically-typed language fragments, with a composition
operator that avoids the issues discussed above, and enables
sound intrinsically typed fragment composition.

2.4 intrinsically-typed language fragments

In this section we introduce language fragments: an abstraction
that bundles a set of intrinsically-typed syntax constructors with
the associated cases of an interpreter. This abstraction comes
with a single composition operation, language fragment compo-
sition, that has nice closure properties, and that subsumes the
four different notions of composition that we introduced in the
previous section (for object language type signatures, value typ-
ing algebras, expression data type signatures, and interpreter
algebras). It thus goes towards addressing both the first and the
second sub-objective stated in the introduction of this paper, by
making it easier to develop type safe DSL components in a way
that supports reuse.

We first discuss (Section 2.4.1) how to bundle these four compo-
nents in a way that each component is defined as being open. We
then discuss (Section 2.4.2) how to compose language fragments,
and why it is necessary to allow compositions with partially-
overlapping canonical forms. Finally, we present (Section 2.4.3)
language fragment composition, which makes language frag-
ments closed under composition. The idea of language fragments,
however, transcends their formulation in this section, which con-
cerns the definition and composition fragments of simply-typed
expression languages. In Section 2.5, we will consider how to
apply the same techniques to a more expressive semantic domain.

[February 18, 2025 at 13:46 – version 4.2]

42 intrinsically-typed interpreters à la carte

2.4.1 Canons and Language Fragments

Language fragments (Fragment) bundle a piece of intrinsically-
typed syntax with its interpretation, and are parameterized over
the available canonical forms (Canon)—i.e., a signature of object
language types together with an algebra over this signature.
is given by the Fragment record type below, which in turn is
parameterized by a set of canonical forms as given by the Canon
record type:

record Canon : Set where
constructor canon
field

ty : Signature
val : Algebra ty Set

record Fragment (c : Canon) : Set where
field expr : ISignature (µ (ty c))

interp : IAlgebra expr (fold (val c))

A value of type Fragment c is a self-contained description of an
intrinsically-typed interpreter. It is, however, defined in terms of
the fixed set of canonical forms given by c, meaning that the com-
position of such fragments is limited to fragments that depend on
the same canonical forms. To compose language fragments with
different canonical forms, we must define them with extension of
the canon in mind, similar to how we defined indexed algebras
with open carriers in Section 2.3.4.2.

Because language fragments are a self-contained description
of intrinsically-typed interpreters, we can view extensibility of
canonical forms independent from the definition of fragments. To
do this, we define the ⇤ modifier, which closes a canon-indexed
type over all possible future extensions:28

28 The ⇤ notation is
borrowed from the

necessity modality of
modal logic. Its

implementation is
essentially a shallow

embedding of Kripke
Semantics [Kripke,

1963] and is inspired by
Allais et al. [2018].

⇤ : (Canon! Set)! Canon! Set
⇤ P c = 8 {c0}! {| val c ✓ val c0 |}! P c0

We use the ⇤ modifier to define open language fragments for the
intrinsically-typed interpreter components from Section 2.3:

[February 18, 2025 at 13:46 – version 4.2]

2.4 intrinsically-typed language fragments 43

ArithFrag : ⇤ Fragment (canon NatTy⌃
NatVal)

expr ArithFrag = IArithExpr⌃
interp ArithFrag = interpArithAlg

BoolFrag : ⇤ Fragment (canon BoolTy⌃
BoolVal)

expr BoolFrag = IBoolExpr⌃
interp BoolFrag = interpBoolAlg

The ⇤ modifier provides exactly the subtyping proof that in-
terpBoolAlg and interpArithAlg need. Furthermore, it is always
possible to transform a open fragment to a closed fragment, and
extract an interpreter from a closed fragment:

extract : 8[⇤ P) P]
extract � = � {| ✓-refl |}

toInterp : (� : Fragment c)! 8[Iµ (expr �)) fold (val c)]
toInterp � = Ifold (interp �)

2.4.2 Fragment Composition and the Need for Partially-Overlapping
Canons

We define a composition operation for open fragments with the
same canonical forms as follows:

fcompose-eq : 8[⇤ Fragment) ⇤ Fragment) ⇤ Fragment]
expr (fcompose-eq �1 �2) = expr �1 :++: expr �2

interp (fcompose-eq �1 �2) = interp �1 :�: interp �2

In many scenarios, however, fcompose-eq alone is insufficient: it
is often necessary to compose fragments with different canonical
forms. Indeed, ArithFrag and BoolFrag have different canonical
forms, so we cannot compose them into a new open fragment
with fcompose-eq.

It may seem tempting to use a composition operation that sums
the canonical forms of fragments, but this is also problematic. Say
we have a fragment that defines an interpreter for a binary less-
than-or-equals expression that compares the results of evaluating
its arguments:

[February 18, 2025 at 13:46 – version 4.2]

44 intrinsically-typed interpreters à la carte

LeqFrag : ⇤ Fragment (canon
(NatTy⌃ :+: BoolTy⌃)
(NatVal � BoolVal))

A fragment that combines LeqFrag and BoolFrag by summing
their canons has the following type:

Fragment (canon
(NatTy⌃ :+: BoolTy⌃ :+: BoolTy⌃)
(NatVal � (BoolVal � BoolVal)))

The resulting fragment has two distinct notions of Boolean types
and values! As a result, an expression such as ite (leq 0 1) 42 0
would be ill-typed; the bool type of leq 0 1 is not the same bool
type that ite expects. Rather, we should identify the Boolean types
of the two fragments. In other words: their canonical forms are
partially overlapping.

2.4.3 Fragment Composition with Partially-Overlapping Canons

We introduce a fragment composition operation for language
fragments with partially-overlapping canons in three stages. First,
we introduce type unions (Section 2.4.3.1), which precisely charac-
terize how two types overlap. Then, we define a similar union for
canonical forms (Section 2.4.3.2) in terms of this type union, which
describes how two canons overlap. Finally, we define fragment
composition (Section 2.4.3.3), which combines two open fragments,
given a canon union that witnesses how their canonical forms
are combined.

2.4.3.1 Overlapping Unions for Types

Figure 3 defines the Union relation, which describes how the
elements of two types A : Set and B : Set map to elements in a
third type C : Set, such that each element in C corresponds to an
element of either A, B, or both. The correspondence is witnessed
by the functions inja, injb, and from, which should be injective. 29

29 For readers
wondering how general

this type union is: the
Union type is a pushout
in the category of Agda

Sets, meaning it is
union-like indeed.

There are two trivial unions which can always be constructed:

[February 18, 2025 at 13:46 – version 4.2]

2.4 intrinsically-typed language fragments 45

record Union (A B C : Set) : Set where
field

inja : A! C
injb : B! C
from : C! These A B

inja-inv : 8 {a}!
hh _⌘ a , ; , (_⌘ a) � proj1 ii (from (inja a))

injb-inv : 8 {b}!
hh ; , _⌘ b , (_⌘ b) � proj2 ii (from (injb b))

from-inv : 8 {c}!
hh (_⌘ c) � inja , (_⌘ c) � injb
, (� (a , b)! inja a ⌘ c ⇥ injb b ⌘ c) ii (from c)

data These (A B : Set): Set where
this : A! These A B
that : B! These A B
these : A! B! These A B

hh_,_,_ii : (A! X)
! (B! X)
! (A ⇥ B! X)
! These A B! X

hh f , g , h ii (this a) = f a
hh f , g , h ii (that b) = g b
hh f , g , h ii (these a b) = h (a , b)

Figure 3: The proof-
relevant relation
Union A B C specifies
that C is the union of
A and B. The types
A and B can overlap
in C, in which case
inja a ⌘ injb b for
some elements a : A
and b : B. The ternary
relation uses the
type These and its
hh_,_,_ii eliminator
shown on the right.

union-copy : Union A A A
union-disjoint : Union A B (A] B)

The function union-copy constructs a union of A with itself such
that all its elements overlap with themselves. Conversely, union-
disjoint constructs a union of two sets of types A and B such
that none of their elements are identified in A] B. We elide the
proofs of the inverse laws (inja-inv, injb-inv, and from-inv) here; the
code accompanying this paper contains the details.

2.4.3.2 Overlapping Canons

Using the Union relation, we define a similar ternary union rela-
tion for canons:

record _•_==_ (c1 c2 c : Canon) : Set where
field
{| ty-union |} : Union

(J (ty c1) K T) (J (ty c2) K T) (J (ty c) K T)
canonicall : {V : T ! Set} {t : J (ty c1) K T}

! (val c1) (fmap V t)$ (val c) (fmap V (inja t))
canonicalr : {V : T ! Set} {t : J (ty c2) K T}

! (val c2) (fmap V t)$ (val c) (fmap V (injb t))

[February 18, 2025 at 13:46 – version 4.2]

46 intrinsically-typed interpreters à la carte

The canon union is directed by a type union: ty-union witnesses
that the type constructors of c are a union of the type constructors
in c1 and c2. The key, however, are the additional proofs canonicall
and canonicalr that witness that the values of c1 and c2 agree in
the overlap (as described by the type union) of their types. This
amounts to a modularization of canonicity lemmas.

Since canon union is based on type union, we can construct
similar trivial unions, where either all type constructors are
overlapping (•-copy), or no type constructors are overlapping
(•-disjoint, which uses the auxiliary disjoint canon union on the
left):

]c : (c1 c2 : Canon)! Canon
ty (c1]c c2) = (ty c1) :+: (ty c2)
val (c1]c c2) = (val c1) � (val c2)

•-copy : c • c == c
•-disjoint : c1 • c2 == (c1]c c2)

We show how to use •-disjoint and •-copy to compose ArithFrag,
BoolFrag, and LeqFrag in Section 2.4.3.4.

2.4.3.3 Fragment Composition Operation

Using canon union, we can now define a general fcompose opera-
tion which lets us compose fragments with partially-overlapping
canons:

fcompose : ⇤ Fragment c1 ! ⇤ Fragment c2 ! c1 • c2 == c
! ⇤ Fragment c

Perhaps surprisingly, we can implement this operation in terms of
the fcompose-eq operation, by (1) exploiting the comonadic structure
of ⇤, and (2) observing that we can recover subtyping (_✓_)
witnesses from union (_•_==_) witnesses. For ⇤, we already
showed that it has an extract function Section 2.4.1. Additionally,
we can define a duplicate function.30, following from transitivity30 The extract and

duplicate functions
correspond to the

operations of a
comonad.

of _✓_:

duplicate : 8[⇤ P) ⇤ (⇤ P)]
duplicate px {| w1 |} {| w2 |} = px {| ✓-trans w1 w2 |}

[February 18, 2025 at 13:46 – version 4.2]

2.4 intrinsically-typed language fragments 47

The type of duplicate says that we can “weaken” the canon that is
implicitly quantified by 8[_],

Next, we observe that canon union implies value subtyping:

•-to-✓l : c1 • c2 == c! (val c1) ✓ (val c)

•-to-✓r : c1 • c2 == c! (val c2) ✓ (val c)

Using these ingredients, we can define fcompose in terms of
fcompose-eq as follows:

fcompose : ⇤ Fragment c1 ! ⇤ Fragment c2 ! c1 • c2 == c
! ⇤ Fragment c

fcompose �1 �2 u =
fcompose-eq

(duplicate �1 {| •-to-✓l u |})
(duplicate �2 {| •-to-✓r u |})

The duplicate function is used to “weaken” the c1 and c2 canons
of the left and right fragment into the canon union c. The lemmas
•-to-✓l and •-to-✓r witness that this weakening is safe.

2.4.3.4 Fragment Composition Examples

With fcompose we compose languages from fragments:

ArithBoolFrag = fcompose ArithFrag BoolFrag •-disjoint

From this fragment, we can derive the intrinsically typed inter-
preter discussed in Section 3.1:

InterpArithBool = toInterp (extract ArithBoolFrag)

We can also compose ArithBoolFrag with LeqFrag, to obtain a
larger language:

LeqArithBoolFrag = fcompose LeqFrag ArithBoolFrag •-copy

In summary, fcompose addresses the three concerns we discussed
in Section 2.3.5. It provides a single, uniform composition opera-
tion for language fragments with compatible but possibly differ-
ent canonicity assumptions, such that language designers do not

[February 18, 2025 at 13:46 – version 4.2]

48 intrinsically-typed interpreters à la carte

have to manually assemble types, values, expressions, and inter-
preters separately, using four different composition operators. It
ensures that language fragments are closed under composition
using fcompose. And the interpreters we extract from language
fragments cannot have conflicting canonicity assumptions.

2.5 language fragments with lexical variables and
effects

Language fragments presuppose both the notion of typing and
semantics. The definition of a fragment in Section 2.4 takes well-
typed terms to be indexed families (Expr : Type! Set), and their
semantics to be an interpreter (interp : Expr t ! Val t). These
presupposed notions limit the expressive power of fragments.
For example, well-typed expressions with lexical binding are
usually presented as indexed families that are additionally pa-
rameterized by a typing context. Their interpreter correspond-
ingly requires an environment of values for variables. Well-typed
expressions for ML-style references, on the other hand, have an
intrinsically-typed interpretation in the category of monotone
predicates [Bach Poulsen et al., 2018]. This motivates this section,
in which we show that the notion of intrinsically-typed language
fragments introduced in the previous section can be transported
to more expressive semantic domains.

In this section we generalize language fragments to a class of se-
mantic domains (Section 2.5.1) that we show can be used to define
intrinsically-typed interpreters for the simply-typed �-calculus
(Section 2.5.2), exceptions (Section 2.5.3), and ML-style references
(Section 2.5.4). Although intrinsically-typed language fragments
can be transported to this more general setting, fragment compo-
sition only combines fragments that are interpreted into the same
semantic domain. Since the examples in Sections 2.5.2 to 2.5.4
are interpreted in different domains, they cannot be combined
into the same language using fragment composition. Instead, we
can manually lift these fragments into a common “super domain”
where they can be composed, as we demonstrate with our case
study in Section 2.5.5. Furthermore, additional innovation may

[February 18, 2025 at 13:46 – version 4.2]

2.5 fragments with lexical variables and effects 49

be required to modularize richer semantic domains that do not
fit into the description we introduce in Section 2.5.1.

2.5.1 Fragments for a Class of Semantic Domains

We generalize the definition of language fragments to permit:
(1) expressions that are typed relative to a context for de-Bruijn
encoded lexical variables, (2) interpretation functions that ac-
cept a lexical environment as parameter, and (3) side effects—in
particular ML-style references. The generalization is based on
a generalization of the codomain of interpretation functions to
some cartesian category C—that is, a category with all products
and a terminal object. Informally, the semantic domains presup-
posed by the definition of fragments from Section 2.4 vs. the
definition we consider in this section differ as shown in Figure 4

Typing Type Semantics Term Semantics

Section 2.4 e : t Val t : Set interp (e : t) : Val t

Section 2.5 � ` e : t Val t : obj(C) interp (� ` e : t) : C(Env � , Val t)

Figure 4: Overview of
how the domain of
intrinsically-typed in-
terpreters changes be-
tween Section 2.4 and
this section

Here, obj(C) represents the objects of C, and C(Env � , Val t)
represents the morphisms from Env � to Val t in C.

In Agda, we can define a type of categories Category0 and a
generalized canon Canon0 that maps types to objects of some
category C0 as follows:

record Category0 : Set where
field obj : Set

morph : obj! obj! Set

record Canon0 : Set where
field ty : Signature

val : Algebra ty (obj C0)

However, it is not possible to define a canon for ML-style refer-
ence values in this style! The problem is that the Canon0 type

[February 18, 2025 at 13:46 – version 4.2]

50 intrinsically-typed interpreters à la carte

record DomainDesc : Set where
field obj : (T : Set)! Set

morph : (V : T ! obj T)! (X Y : obj T)! Set

record Canon : Set where
constructor canon
field

ty : Signature
val : 8 {T}! J ty K (T ⇥ obj D T)

! obj D T

record Fragment (c : Canon) : Set where
field

expr : ISignature (List (µ (ty c)) ⇥ µ (ty c))
interp : IAlgebra expr

(� (� , t)! morph D (fold (val c))
(Env c �)
(fold (val c) t))

Figure 5: Definition
of categories, canons,
and language frag-
ments. The domain
description D is a
module parameter,
and Env c � is a de
Bruijn indexed envi-
ronment comprising
value objects whose
canonical forms are
given by the canon c.

assumes that we can compositionally map types onto objects
of C0. This is not true for ML-style references. To see the issue,
consider the following mock case of a refCanon : Canon0 that
we wish to define, assuming that C0 is a category of monotone
predicates; i.e., obj C0 = List T ! Set.

val refCanon (ref , V :: []) = � ⌃! ???

Following how references are traditionally typed [Harper, 1994,
Pierce, 2002], the right hand side is supposed to witness that
there exists an location of type t in the store type ⌃, where t

is a subterm of ref t. However, since Canon0 defines values as
plain algebras, the mock case above does not have access to the
subterm t; only to the object V : obj C0 resulting from folding
over the sub-term t.

It is possible to construct a compositional interpretation of
reference types—that is, in terms of the object V—in the context
of semantic typing, where types are viewed as a set of values. In
our setting this would correspond to defining store types as a
list of Sets, and mapping reference types to a proof that V is
a member of this list. If we naively attempt to define values
this way, however, their definition becomes inconsistent, since
the type of these membership proofs is simultaneously bigger

[February 18, 2025 at 13:46 – version 4.2]

2.5 fragments with lexical variables and effects 51

than and included in the set of values! Although we can escape
this paradox by stratifying the interpretation of types [Ahmed
et al., 2002, Ahmed, 2004], we would need to find a way to
adapt the intrinsically-typed semantics for ML-style references
by Bach Poulsen et al. [2018] to interpret into such a layered
domain.

Instead, we opt to generalize canons and categories to reflect
that the set of objects and morphisms comprise components as-
sembled from indexed signatures and algebras. This generalized
definition is shown and Figure 5. Although similar, the explicit
injection of types and values means that the resulting structure
(defined in the DomainDesc record) is not quite a category. We
will refer to this structure as a domain description, using D to
range over it. The move from categories to domain descriptions
requires three generalizations:

1. Canons are generalized to use a flavor of algebra that
supports paramorphisms [Meertens, 1992]—i.e., a recursion
scheme that provides access to each sub-term both before
and after we have recursively folded over it. The val field
of Canon in Figure 5 shows the generalization, which maps
a pair of the original sub-term of type T and its folded
counterpart of type obj D T to an object of type obj D T ,
where T is the final set of object language types.

2. Objects of a domain description may depend on a final type
of object language types, as the T : Set parameter of the
obj field of DomainDesc in Figure 5 indicates. This general-
ization is used to define modular paramorphic algebras for
which we only learn the final type of object language types
after we are done composing all canons and fragments.

3. Morphisms of domain descriptions may depend on the final
value typing T ! obj D T , as the first parameter of the morph
field of Fragment in Figure 5 indicates. This generalization
is used to define domain descriptions whose morphisms
depend on value typings. For example, to define ML-style
references Section 2.5.4 we use morphisms that implicitly
thread stores with values that depend on value typings.

[February 18, 2025 at 13:46 – version 4.2]

52 intrinsically-typed interpreters à la carte

Using these generalizations, the Fragment type in Figure 5 ensures
that a fragment closure ⇤ Fragment will use the final canon of the
language as the definition of the final set of types and the final
set of value typings which objects and morphisms depend on.

By deriving D from the category of Agda Sets (i.e, objects are
types in Set and morphisms are Agda functions) we regain the
framework as defined in Section 2.4, but now extended with the
necessary infrastructure for variables and stores. It is straightfor-
ward to transport the fragments we developed in Section 2.4 to
this more expressive setup.

Before we can define intrinsically-typed fragment instances in
this more expressive setting, we also need to transport the defini-
tions of isomorphism, canon union, and canon subtyping that we
introduced in Section 2.3.1 and Section 2.4. The essential ingredi-
ent of these definitions is the notion of isomorphism. Lifting this
notion isomorphism to relate objects of domain descriptions via
morphisms of domain descriptions, all of the definitions from
before translate straightforwardly. The safe upcasting and down-
casting operations for translating between between the value
typings of the fragment canon and the final fragment look more
involved because of the switch to paramorphisms:

" : {| _ : c1 ✓ c |}

! morph D (fold (val c))
(val c1 (fmap (� t! t , fold (val c) t) t))
(fold (val c) (inject t))

: {| _ : c1 ✓ c |}

! morph D (fold (val c))
(fold (val c) (inject t))
(val c1 (fmap (� t! t , fold (val c) t) t))

In the remainder of this section we illustrate how this more
expressive variant of language fragments allows us to define
language fragments for different language features and effects.

[February 18, 2025 at 13:46 – version 4.2]

2.5 fragments with lexical variables and effects 53

2.5.2 Simply-Typed Lambda Calculus

As our first example, we consider how to define a fragment for
the simply-typed �-calculus. We instantiate the definitions from
Section 2.5.1 with a domain description based on the category of
Agda Sets:

Sets : DomainDesc
obj Sets T = Set
morph Sets V A B = A! B

We use the following canon, interpreting types in Set:

data TFunShape : Set where
fun : TFunShape

TFun⌃ = TFunShape B � where
fun! 2

funCanon : Canon
ty funCanon = TFun⌃
val funCanon (fun , (s , V) :: (t , W) :: []) = V ! W

fun0 : {| TFun⌃ � � |}! (s t : µ �)! µ �

fun0 s t = inject (fun , (s :: t :: []))

Here, we see the impact of using a paramorphism: the arguments
to fun are not just replaced by their value (V/W), but paired with
the original type (s/t) as well. The interpretation of function types
is defined solely in terms of V and W, but we will need access
to the uninterpreted recursive argument to define a language
fragment for ML-style references (Section 2.5.4).

The signature LamExpr⌃ defines the three standard constructs
of the � calculus:

data LamExprShape {| _ : TFun⌃ � � |}

: List (µ �) ⇥ µ �! Set where
var : t 2 � ! LamExprShape (� , t)
abs : LamExprShape (� , fun0 s t)
app : {s : µ �}! LamExprShape (� , t)

[February 18, 2025 at 13:46 – version 4.2]

54 intrinsically-typed interpreters à la carte

LamExpr⌃ : {| TFun⌃ � � |}! ISignature (List (µ �) ⇥ µ �)
LamExpr⌃ = LamExprShape I � where

(var x) ! []
(abs {�}{s}{t})! (s :: � , t) :: []
(app {�}{t}{s})! (� , fun0 s t) :: (� , s) :: []

The var and abs constructors demonstrate the need for tracking
a type context � . To reference a variable we must supply a wit-
ness t 2 � proving that it is in scope, and the type context of
the function body is extended with the argument type s when
constructing a �-abstraction.

We then define a language fragment for the simply-typed
�-calculus as follows:

stlc : ⇤ Fragment funCanon
expr stlc = LamExpr⌃
interp stlc (var x , []) nv = fetch x nv
interp stlc (abs , e :: []) nv = " (� v! e (v , nv))
interp stlc (app , e1 :: e2 :: []) nv = # (e1 nv) (e2 nv)

Variables are interpreted by invoking the function fetch : t 2 � !
Env � ! fold (val c) t, which performs a safe lookup in the environ-
ment. Since function types are mapped to Agda functions, we can
reuse Agda’s function abstraction and application to interpret
the abs and app constructors.

2.5.3 Exceptions

Next, we consider a language fragment for safe division, which
raises an exception when the divisor is zero. In general, we can
define effectful fragments by choosing a suitable monad [Moggi,
1989] that encapsulates the effects, and instantiating with a do-
main description based on the corresponding Kleisli category
(which applies the monad to the target object of morphisms). For
exceptions we use Maybe, which is a monad on the category Sets.
The corresponding domain description is defined as follows:

MSets : DomainDesc
obj MSets _ = Set
morph MSets _ A B = A! Maybe B

[February 18, 2025 at 13:46 – version 4.2]

2.5 fragments with lexical variables and effects 55

With this description, terms are interpreted as a function with
type Env � ! Maybe (fold (val c) t). This allows us to implement
an interpreter for div, which returns nothing if the divisor is zero,
where the function _/_ takes an (automatically inferred) proof
that the divisor is greater than zero.

divide : ⇤ Fragment natCanon
expr divide = DivExpr⌃
interp divide (div , m1 :: m2 :: []) nv = do

v1 m1 nv�= #
v2 m2 nv�= #
case v2 of � where

zero ! nothing
(suc n)! " (v1 / suc n)

Rather than working with values of the Maybe type directly, we
use Agda’s do-notation31 as syntactic sugar for monadic com- 31 https://agda.

readthedocs.io/en/

v2.6.2.2/language/

syntactic-sugar.

html

putation, as well as the �= operator which denotes monadic
bind [Moggi, 1991]. Note that since the domain description is
based on a Kleisli category, the result of up- and down casting
(which are defined as morphisms) is now also wrapped in a
Maybe.

2.5.4 ML-Style References

Finally, we consider how to define a language fragment for ML-
style references, based on the intrinsically-typed semantics by
Bach Poulsen et al. [2018]. We interpret into a domain based on
a Kleisli category generated from the description ST, which has
store-type-indexed Sets as objects and index-preserving functions
as morphisms. We will discuss the relevant monad shortly.

ST : DomainDesc
obj ST T = List T ! Set
morph ST V P Q = {| Weakenable V |}! 8[P) Q]

In the definition of ST, we require access to the syntax of types
(T) and their interpretation (V) to define the sets of objects and
morphisms. Store types are defined in terms of T, and to interpret

[February 18, 2025 at 13:46 – version 4.2]

https://agda.readthedocs.io/en/v2.6.2.2/language/syntactic-sugar.html
https://agda.readthedocs.io/en/v2.6.2.2/language/syntactic-sugar.html
https://agda.readthedocs.io/en/v2.6.2.2/language/syntactic-sugar.html
https://agda.readthedocs.io/en/v2.6.2.2/language/syntactic-sugar.html
https://agda.readthedocs.io/en/v2.6.2.2/language/syntactic-sugar.html

56 intrinsically-typed interpreters à la carte

ML-style references, we need to express the assumption that V is
weakenable: every value that is well-typed relative to a given store,
can also be typed with a bigger store.

Note that the ST description defined above admits predicates
that are not monotone as objects; that is, objects are not guaran-
teed to be Weakenable. We could rectify this by requiring objects
to be weakenable; i.e.:

ST0 : DomainDesc
obj ST0 T =
9 � (P : List T ! Set)! Weakenable (const P)

morph ST0 V P Q = 8[proj1 P) proj1 Q]

However, that would clutter the resulting interpreter, which relies
on dependent pattern matching on objects. For that reason, we
use ST which has less structure, but which allows us to explicitly
assume that predicates are weakenable when we need it.

The canon for references shows why val needs to be a paramor-
phism: the interpretation of the type ref t is a proof of the form
t 2 ⌃, which makes val non-compositional.

data TRefShape : Set where
ref unit : TRefShape

TRef⌃ = TRefShape B � where
ref ! 1
unit! 0

refCanon : Canon
ty refCanon = TRef⌃
val refCanon (ref , (t , V) :: []) ⌃ = t 2 ⌃
val refCanon (unit , []) ⌃ = >

Interpreting ML-style references has side effects, in the sense
that the interpreter can modify a global store. To define the
interpreter for ML-style references, we require a monad over
store predicates that encapsulates this interaction with the store.
Rather than settling on a particular monad, we keep it abstract,
and assume that it satisfies the Mem interface (Figure 6, left),
which provides the operations alloc, retrieve, and write. Following
Bach Poulsen et al. [2018], we also require that the chosen monad

[February 18, 2025 at 13:46 – version 4.2]

2.5 fragments with lexical variables and effects 57

Ref : T ! List T ! Set
Ref t ⌃ = t 2 ⌃

record Mem (M : Monad ST) : Set where
field

alloc : 8[V t) M V (Ref t)]
retrieve : 8[Ref t) M V (V t)]
write : 8[Ref t) V t) M V U]

refs : {| Mem M |}! ⇤ Fragment refCanon
expr refs = RefExpr⌃
interp refs (init , m :: []) nv = do

v m nv
alloc v�= "

interp refs (deref , m :: []) nv = do
l m nv�= #
retrieve l

interp refs (update , m1 :: m2 :: []) nv = do
(l , nv) (m1 nv�= #) ^ nv h wk-env i
(v , l) m2 nv ^ l h wk-ref i
write l v�= "

Figure 6: Definition
of the Mem interface,
and a fragment for
ML-style references

has tensorial strength [Moggi, 1991], meaning it supports the
following operation, where \ is the usual product type lifted to
predicates:

^ : 8[M P) Q) M (P \ Q)]

We use this operation whenever we compute a value, but need
to perform more computations before we can return that value.
This situation occurs, for example, in the update case of the in-
terpreter in Figure 6. Since computations may change the store,
it is not immediately clear that previously computed values are
still typeable relative to the updated store after running these
computations. The strength operation allows us to pass these
values back into the monad by pairing them with a computation,
updating their store typing along the way. The key to imple-
menting strength is to assume that the store only ever increases
monotonically during execution (i.e., values can be added or
changed, but never deleted), and to require that strength can
only be applied to values that are weakenable with respect to this
ordering. The interpreter itself (Figure 6, right) is then defined
in terms of the operations provided by these interfaces, and de-
fines interpretation for init, deref, and update expressions, which
respectively create, read from, and update a reference. Hence,

[February 18, 2025 at 13:46 – version 4.2]

58 intrinsically-typed interpreters à la carte

we can use this fragment with any monad that satisfies the Mem
interface and has tensorial strength.

2.5.5 Case Study

To evaluate our approach we defined a small library of fragments
as a case study.32 7 shows an overview of the Canons, monadic in-32 The case study is

available as part of the
accompanying

artifact [Van der Rest
et al., 2022a].

terfaces, Fragments, and languages that we implemented. Nodes
are Agda modules, and dashed arrows are imports. For each mod-
ule, we indicate the line count of the corresponding file. In ad-
dition to the Mem interface from Section 2.5.4, we assume three
additional monadic interfaces: Lambda (which provides opera-
tions for function abstraction and application), General (which
provides an operation for general recursion), and Except (which
provides operations for throwing and catching exceptions). It
is possible to construct many more languages than shown in
the figure, since any unique combination of fragments can be
composed into a unique language.

The combination of ML-style references and functions means
that, even without assuming the General interface, we can encode
general recursion using Landin’s Knot. Thus, our interpreter
must also be able to assign a semantics to non-terminating pro-
grams. A common technique for representing (potentially) non-
terminating computations in a total language like Agda, that we
also use for our case study, is to use a fueled interpreter [Amin
and Rompf, 2017, Owens et al., 2016]. A computation that may
either return an A or diverge, is represented as a function of type
N ! Maybe A that returns a just if it finishes computing before
running out of fuel, and nothing otherwise.

The type of fragment composition necessitates that we define
all the fragments from this case study using the same semantic
domain. To support a fragment for ML-style references, this must
be the same semantic domain that we developed in Section 2.5.4,
hence, we cannot use the exact fragments for the simply-typed
lambda calculus and exceptions that we defined in Section 2.5.2
and Section 2.5.3. Instead we must re-define them to interpret
into the new semantic domain. To extract an interpreter for com-

[February 18, 2025 at 13:46 – version 4.2]

2.5 fragments with lexical variables and effects 59

Nat
21 LoC

Bool
19 LoC

Pair
19 LoC

Maybe
19 LoC

Ref
19 LoC

Fun
19 LoC

Canons

Mem
18 LoC

Lambda
24 LoC

General
25 LoC

Except
16 LoC

Monadic Interfaces

Arith
34 LoC

Bool
33 LoC

Pair
40 LoC

Maybe
40 LoC

NatCase
33 LoC

MaybeCase
31 LoC

Ref
45 LoC

Lambda
47 LoC

General
39 LoC

Except
32 LoC

Fragments

Expr
19 LoC

STLC+Ref
21 LoC

MiniML
29 LoC

STLC+General+Maybe
21 LoC

Languages

Figure 7: Overview
of canons, interfaces,
fragments, and lan-
guages, together with
their dependencies

posed languages, we must also provide a monad that instantiates
monadic interfaces, such as the Mem interface in Figure 6. Our
case study achieves this by using a monad that simultaneously
instantiates all of the interfaces in Figure 7.

The Lambda fragment maps a lambda expression to a monadic
operation which accepts a monadic operation (the function body)
as input, and produces a closure value as output. Choosing a
monad that has both this operation and satisfies the Mem interface
discussed in Section 2.5.4 requires some care. We cannot use
Agda functions to represent function values, as this results in a
recursive domain equation: a mutual dependency between values
and stores which Agda’s termination checker will (rightly) reject.
To solve this problem, we adopt a flavor of effect handler that is
similar to the latent effect handlers of Van den Berg et al. [2021b].

2.5.6 Discussion

We set out to show that our approach to intrinsically-typed and in-
trinsically compositional language fragments can be transported
from the rather simple semantic domain for which we presented
the ingredients in Section 2.4 to a much richer semantic domain
from the state-of-the-art in intrinsically-typed interpreters. The
key idea of our approach is that the extrinsic proof obligations of
both type safety and fragment composition can be made intrin-

[February 18, 2025 at 13:46 – version 4.2]

60 intrinsically-typed interpreters à la carte

sic to fragment well-typing. We argued that the benefits of this
approach are that it helps language component developers to
get their semantics right from the start, and that it reduces code
size. Our case study indeed demonstrated that these benefits
are upheld when we employ the same approach in the relevant
semantic domain.

At the same time, the case study also showed that the specifics
of particular semantic domains come with their own challenges
regarding compositionality. Furthermore, reuse is limited to the
chosen semantic domain, which is selected upfront. To use the
presented model for compositional fragments as the underpin-
ning for a meta-language for DSL development, one needs to
select a class of domains that is expressive enough to cover a
large set of desired DSLs. Making this selection and tackling
the compositionality challenges that are specific to that class of
domains is not addressed by this paper.

2.6 related work

We have presented an approach to constructing type-safe lan-
guages from composable, type-safe language fragments. As de-
scribed in previous sections, our approach builds on data types à
la carte [Swierstra, 2008]. Here, we describe other related work.

2.6.1 Meta-Theory à la Carte.

Our work is closely related to previous work on Meta-Theory à
la Carte (MTC) [Delaware et al., 2013b], Modular Monadic Meta-
Theory (3MT) [Delaware et al., 2013c], and Generic Data Types à la
Carte (GDTC) [Keuchel and Schrijvers, 2013].

Delaware et al. [2013b] and Keuchel and Schrijvers [2013] fo-
cus on pure language features, and support binders by using
parameterized higher-order abstract syntax [Chlipala, 2008]. Other
than binding, they do not consider effectful language features.
Delaware et al. [2013c] extend the MTC approach with effects, us-
ing monadic interfaces similar to Mem in Figure 6. They also con-
struct their monads modularly using monad transformers [Liang

[February 18, 2025 at 13:46 – version 4.2]

2.6 related work 61

et al., 1995b]. We did not build our monad modularly, as that
would require composing different domain descriptions, which
is an open question.

We need on average 37 LoC (counted with Al Danial’s cloc

tool) to implement verified language fragments. If we also count
lines of code for definitions of canonical forms and monadic
interfaces, this number approximately doubles. In comparison,
MTC and GDTC report needing respectively on average 1100 LoC
and 1050 LoC to define and verify similar language features. In
other words, the difference in code size between our intrinsically-
typed approach and the extrinsic approach found in previous
work is about an order of magnitude.

Our framework code is also more concise: we use 859 LoC,
whereas MTC uses 2500 LoC, GDTC uses 3500 LoC, and 3MT
uses 4400 LoC. We use the Agda Standard Library for lists,
relations over lists, functions for working with functions and
predicates, and more. Previous works also seem to use Coq’s
standard library, but perhaps to a lesser extent.

Some of the difference in code sizes can be ascribed to code
that deals with “wrong” cases, since these cases are absent in
intrinsically-typed interpreters. Our language fragment abstrac-
tion also saves code when composing languages. This abstraction
does not exist in the MTC frameworks, where language features
are the sum of their parts (i.e., types, expressions, values, type
system, interpreter, and type safety proof). In our framework all
of these parts are summed using a single operation: fragment
composition.

2.6.2 Generic Programming and Meta-Theory

A key technique in our work is to encode data type descriptions
as signatures. The Signature type we used as our data type descrip-
tion is known as a container [Abbott et al., 2005a, Altenkirch et al.,
2015]. The universe of syntaxes encoding [Chapman et al., 2010b,
Dagand, 2013b] (which we will call just “universe encoding”)
encodes data type descriptions in a different way but encodes
the same class of data types as containers do. The difference is in

[February 18, 2025 at 13:46 – version 4.2]

62 intrinsically-typed interpreters à la carte

how the encoding is defined: a universe encoding is akin to the
syntactic representation of a grammar,
whereas the container encoding corresponds to a bag of symbols
with associated arities. For generic programming applications
that operate on the syntax of data types itself, the universe encod-
ing is often preferred. For example, ornamentation is a technique
for “decorating” data types with additional structure [McBride,
2011, Dagand and McBride, 2014, Ko and Gibbons, 2017, Dagand,
2017].

Allais et al. [2018] use the universe encoding to implement
a generic framework for syntaxes with variable binding, enabling
binding-aware generic programming, with generic correctness
guarantees. Whereas our paper focuses on the problem of defin-
ing an intrinsically-typed interpreter in a modular way, the work
of Allais et al. [2018] suggests a promising direction for meta-
theoretical reasoning about object languages and interpreters
defined using similar generic programming techniques as our
framework. Whether it is possible to apply the generic meta-
theoretical reasoning techniques of Allais et al. [2018] to the style
of modular intrinsically-typed interpreters we develop in this
paper is an interesting question for future work.

Final tag-less interpreters [Carette et al., 2009b] represent a dif-
ferent flavor of generic programming for implementing type
safe definitional interpreters. In particular Carette et al. [2009b]
showed that it is possible to implement type safe interpreters
by modeling object language expression constructors as an ab-
stract interface which, behind the scenes, is constructing a meta-
language program that corresponds to interpreting the object lan-
guage expression. The resulting interpretation of the object lan-
guage expression is type safe because meta-language programs
are type safe. Object algebras [d. S. Oliveira and Cook, 2012] are
based on a similar idea, but for object oriented meta-languages.
Bahr and Hvitved [2012b] extend the final tag-less approach
to intrinsically-typed definitional interpreters in Haskell. Their
intrinsically-typed interpreter does not treat value types as open,
but does support open object language types, by using Haskell
types as object language types. A similar result was achieved by

[February 18, 2025 at 13:46 – version 4.2]

2.6 related work 63

Parreaux et al. [2019] in Scala. It is unclear how the final tag-less
approach can be used to define type safe semantics of languages
with effects that are not built into the meta-language.

2.6.3 Other Approaches to Modular Semantics and their Proofs

Cimini et al. [2020] extrinsically verify type safety of language
specifications by developing a meta type-system for type-safe
language specifications. A (meta) type-correct specification yields
a type-safe semantics. Language definitions are monolithic, and
cannot be constructed from separately checked fragments. Their
approach uses reduction semantics, which has some modularity
issues. For example, if we add support for exception handlers,
we need to copy-paste the current reduction context definition to
express a context up-to the closest handler. On the other hand,
their approach make it easy to verify type safety of new exten-
sions, since that is done automatically by their meta-language
type checker.

Schwaab and Siek [2013] present an Agda formalization of a
modular extrinsic type safety proof for a small-step operational
semantics defined using a variant [Norell, 2008] of the universe
encoding due to Chapman et al. [2010b], Dagand [2013b] dis-
cussed above. The approach is closely related to the extrinsic
modular proofs found in MTC [Delaware et al., 2013c], but is
based on modular progress/preservation lemmas about a small-
step transition relation. A direct comparison with MTC is dif-
ficult because of the difference in meta- and object language
(Schwaab and Siek [2013] encode a simple object language with
just numbers and lists), but we expect that progress/preservation
style requires more LOC per feature. On the other hand, pro-
gress/preservation lemmas are a time tested paradigm for type
safety proofs. As shown by Wadler et al. [2020], it is possible to
marry the intrinsically-typed approach with the small-step style.
We expect that it is possible to modularize intrinsically-typed
small-step semantics using similar techniques as we use in our
framework, but leave verification of this expectation for future
research.

[February 18, 2025 at 13:46 – version 4.2]

64 intrinsically-typed interpreters à la carte

Modular Structural Operational Semantics (MSOS) [Mosses,
2004] is a framework for modularly specifying small-step opera-
tional semantics. Madlener et al. [2011] show how to implement
this framework in the Coq proof assistant, and how to do mod-
ular proofs about the small-step transition relation. In a related
line of work, Torrini and Schrijvers [2015] describe a different
method for modular proofs in Coq, and provide, as case study, a
modular extrinsic type safety proof about a modularly-specified
small-step transition relation. Churchill et al. [2015] use an exten-
sion of MSOS [Churchill and Mosses, 2013] to modularly specify
the static and dynamic semantics of a collection of individual
fundamental programming constructs, but do not establish type
safety.

Interaction Trees [Xia et al., 2020] are a general purpose coinduc-
tive data structure for representing effectful and non-terminating
computations based on the freer monad [Kiselyov et al., 2013, Kise-
lyov and Ishii, 2015]. As such they support modular reasoning by
defining the “visible events” (i.e., effects) of a computation as a
functor signature, with the type of interaction trees being closed
under the co-product of these signatures. In later work, Zakowski
et al. [2021] used interaction trees to give a formal semantics for
LLVM IR. The flavor of effect handlers that we used to define a
semantics for MiniML in Section 2.5.5 bears some semblance to
interaction trees, but to explore their relation in more detail is a
subject of further study.

In his popular textbook on Types and Programming Languages,
Pierce [2002] makes use of canonical forms lemmas to make type
safety proofs robust as new language fragments are gradually
introduced. He attributes the idea of using canonical forms lem-
mas to Bob Harper (no citation given). We have shown how to
define interpreters and language fragments in a way that guar-
antees that the subset of values that an interpreter- or language
fragment knows about is guaranteed to be canonical, essentially
making language fragments robust by construction.

[February 18, 2025 at 13:46 – version 4.2]

2.7 conclusion 65

2.7 conclusion

In this paper, we presented a framework for defining composable
and safe by construction language fragments that can be checked
in isolation and safely reused to build type safe languages. This
makes it easier to develop and reuse interpreters that do not
go wrong, and reduces the overhead traditionally associated
with modular verification of type safety. This makes mechanized
meta-theory available to a wider audience of DSL developers.

postscript

The contributions presented in this chapter indeed give us a
handle on understanding how the type safety invariant encoded
in intrinsically-typed interpreters can be maintained under com-
position. While this is an important first step towards employing
intrinsically-typed interpreters for defining reusable language
components, there is still work ahead. As pointed out in Sec-
tion 2.5.6, language constructs may impose different require-
ments on the semantic domain they denote into, and it is still
an open question how to mediate these different requirements
when composing fragments.

Differences in the semantic domain of fragments arise, for the
most part, because their interpreters exhibit different side effects.
A modular treatment of these side effects is thus a key ingredient
for composing fragments with different domains. In the next
chapter, we will work towards expanding the set of side effects
that can be dealt with modularly.

[February 18, 2025 at 13:46 – version 4.2]

[February 18, 2025 at 13:46 – version 4.2]

3
H E F T Y A L G E B R A S : M O D U L A R E L A B O R AT I O N S
A N D R E A S O N I N G F O R P R O G R A M S W I T H
H I G H E R - O R D E R E F F E C T S

preface

A key question left open at the end of last chapter was how to
mediate language fragments with different semantic domains.
By defining the semantics of fragments in terms of operations
of some abstract monad, we reduced the problem to finding a
structured and modular approach to constructing these monads.
Although algebraic effects and handlers [Plotkin and Pretnar,
2009a] provide a principled method for defining the syntax and
implementation of abstract monads, the approach is not expres-
sive enough to construct the monad(s) we need to implement the
language fragments presented in Section 2.5.

There are two main reasons why algebraic effects and handlers
are not sufficient. The first is that they are, by definition, restricted
to describing the syntax of monads that only have first-order op-
erations. That is, they cannot describe monadic operations which
take computations as an argument, precluding many common
operations such as exception catching. Several of the fragments
shown in Figure 7, such as Lambda and Except, are implemented
in terms of such higher-order operations. The second reason is
that fragments may be denoted into a monad on a category with
more structure than Agda’s Set. The Ref fragment in Figure 7, for
example, requires a monad in a category of montone predicates
to enforce well-formedness of references. This chapter contributes
a new approach to defining the syntax and semantics of monads

67

[February 18, 2025 at 13:46 – version 4.2]

68 hefty algebras

with higher-order operations by elaborating them into algebraic
effects.

3.1 introduction

Defining abstractions for programming with side effects is a
research question with a long and rich history. The goal is to
define an interface of (possibly) side effecting operations where
the interface encapsulates and hides irrelevant operational details
about the operations and their side effects. Such encapsulation
makes it easy to refactor, optimize, or even change the behavior
of a program, by changing the implementation of the interface.

Monads [Moggi, 1989] have long been the preferred solu-
tion to this research question. However, algebraic effects and han-
dlers [Plotkin and Pretnar, 2009b] are emerging as an attractive
alternative solution, due to the modularity benefits that they pro-
vide. However, these modularity benefits do not apply to many
common operations that take computations as arguments.

3.1.1 Background: Algebraic Effects and Handlers

To understand the benefits of algebraic effects and handlers and
the modularity problem with operations that take computations
as parameters, we give a brief introduction to algebraic effects,
based on the effect handlers tutorial by Pretnar [2015]. Readers
familiar with algebraic effects and handlers are encouraged to
skim the code examples in this subsection and read its final
paragraph.

Consider a simple operation out for output which takes a string
as argument and returns the unit value. Using algebraic effects
and handlers its type is:

out : String! () ! Output

Here Output is the effect of the operation. In general A !� is a
computation type where A is the return type and � is a row (i.e.,
unordered sequence) of effects, where an effect is a label associated
with a set of operations. A computation of type A !�may only use

[February 18, 2025 at 13:46 – version 4.2]

3.1 introduction 69

operations associated with an effect in �. An effect can generally
be associated with multiple operations (but not the other way
around); however, the simple Output effect that we consider is
only associated with the operation out. Thus () ! Output is the
type of a computation which may call the out operation.

We can think of Output as an interface that specifies the pa-
rameter and return type of out. The implementation of such an
interface is given by an effect handler. An effect handler defines
how to interpret operations in the execution context they occur
in. The type of an effect handler is A !�) B !�0, where � is the
row of effects before applying the handler and �0 is the row after.
For example, here is the type of an effect handler for Output:

hOut : A ! Output,�) (A⇥ String) !�

The Output effect is being handled, so it is only present in the
effect row on the left.33 As the type suggests, this handler handles 33 Output could occur

in � too. This raises the
question: which Output
effect does a given
handler actually handle?
We refer to the
literature for answers to
this question; see, e.g.,
the row treatment of
Morris and McKinna
[2019b], the effect
lifting of Biernacki et al.
[2018], and the effect
tunneling of Zhang
and Myers [2019].

out operations by accumulating a string of output. Below is the
handler of this type:

hOut = handler { (return x) 7! return (x, “”)

(out s;k) 7! do (y, s 0) k ();

return (y, s ++ s
0) }

The return case of the handler says that, if the computation being
handled terminates normally with a value x, then we return a
pair of x and the empty string. The case for out binds a variable
s for the string argument of the operation, but also a variable k

representing the execution context (or continuation). Invoking an
operation suspends the program and its execution context up-to
the nearest handler of the operation. The handler can choose to re-
invoke the suspended execution context (possibly multiple times).
The handler case for out above always invokes k once. Since k

represents an execution context that includes the current handler,
calling k gives a pair of a value y and a string s

0, representing
the final value and output of the execution context. The result
of handling out s is then y and the current output (s) plus the
output of the rest of the program (s0).

[February 18, 2025 at 13:46 – version 4.2]

70 hefty algebras

In general, a computation m : A !� can only be run in a
context that provides handlers for each effect in �. To this end,
if � = �1,�2 and h : A !�1) B !�0

1
, then the expression

(with h handle m) : B !�0
1

,�2 runs m in the context of the
handler h. For example, consider:

hello : () ! Output
hello = out “Hello”; out “ world!”

Using this, we can run hello in a scope with the handler hOut to
compute the following result:

(with hOut handle hello) ⌘ ((), “Hello world!”)

An attractive feature of algebraic effects and handlers is that
programs such as hello are defined independently of how the
effectful operations they use are implemented. This makes it
is possible to refine, refactor, or even change the meaning of
operations without having to modify the programs that use them.
For example, we can refine the meaning of out without modifying
the hello program, by using a different handler hOut0 which prints
output to the console. However, some operations are challenging
to express in a way that provides these modularity benefits.

3.1.2 The Modularity Problem with Higher-Order Operations

Algebraic effects and handlers provide limited support for opera-
tions that accept computations as arguments (sometimes called
higher-order operations). The limitation is subtle but follows from
how handler cases are typed. Following Plotkin and Pretnar
[2009b], Pretnar [2015], the left and right hand sides of handler
cases are typed as follows:

handler { · · · (op v|{z}
A

; k|{z}
B ! C !�0

) 7! c|{z}
C !�0

, · · · }

Here it is only k whose type is compatible with the right hand
side. In theory, the parameter type v would also be compatible
if A = C !�0. However, encoding computations as parameters in
this way is non-modular. The reason is that effect handlers are

[February 18, 2025 at 13:46 – version 4.2]

3.1 introduction 71

not applied recursively to parameters of operations [Plotkin and
Pretnar, 2009b, Pretnar, 2015]; i.e., if h handles operations other
than op, then

with h handle (do x op v;m)

⌘ do x op v; (with h handle m)

This implies that the only way to ensure that v has type A = C !�0

whose effects match the context of the operation (e.g., k : B !
C !�0), is to apply handlers of higher-order effect encodings (such
as op) before applying other handlers (such as h). In turn, this
means that programs can contain at most one higher-order effect
encoded in this way (otherwise, which handler do we apply
first?). Consequently, encoding computation parameters in terms
of the value v carried by an operation does not support modular
definition, composition, and handling of higher-order effects.

A consequence of this restriction is that algebraic effects and
handlers only support higher-order operations whose computa-
tion parameters are continuation-like. In particular, for any oper-
ation op : A !� ! · · · ! A !� ! A !� and any m1, . . . ,mn and
k,

do x (op m1 . . .mn);k x

⌘ op (do x1 m1;k x1) . . . (do xn mn;k xn) (†)

This property, known as the algebraicity property [?], says that the
computation parameter values m1, . . . ,mn are only ever run in a
way that directly passes control to k. Such operations can without
loss of generality or modularity be encoded as operations without
computation parameters; e.g., op m1 . . .mn = do x op0 (); select x
where op0 : ()! D

n !� and select : Dn ! A !� is a function that
chooses between n different computations using a data type D

n

whose constructors are d1, . . . ,dn such that select di = mi for i =
1..n. Some higher-order operations obey the algebraicity property;
many do not. Examples of operations that do not include:

• Exception handling: let catch m1 m2 be an operation that
handles exceptions thrown during evaluation of computa-
tion m1 by running m2 instead, and throw be an operation

[February 18, 2025 at 13:46 – version 4.2]

72 hefty algebras

that throws an exception. These operations are not algebraic.
For example,

do (catch m1 m2); throw 6⌘ catch (do m1; throw) (do m2; throw)

• Local binding (the reader monad [Jones, 1995]): let ask be an
operation that reads a local binding, and local r m be an
operation that makes r the current binding in computation
m. Observe:

do (local r m); ask 6⌘ local r (do m; ask)

• Logging with filtering (an extension of the writer monad by
Jones [1995]): let out s be an operation for logging a string,
and censor f m be an operation for post-processing the
output of computation m by applying f : String! String.3434 The censor operation

is a variant of the
function by the same

name the widely used
Haskell mtl library.

Observe:

do (censor f m); out s 6⌘ censor f (do m; out s)

It is, however, possible to elaborate higher-order operations
into more primitive effects and handlers. For example, censor can
be elaborated into an inline handler application of hOut:

censor : (String! String)! A ! Output,�! A ! Output,�

censor f m = do (x, s) (with hOut handle m);

out (f s);

return x

The other higher-order operations above can be defined in a
similar manner.

Elaborating higher-order operations into standard algebraic
effects and handlers as illustrated above is a key use case that
effect handlers were designed for [Plotkin and Pretnar, 2009b].
However, elaborating operations in this way means the operations
are not a part of any effect interface. So, unlike plain algebraic
operations, the only way to refactor, optimize, or change the
semantics of higher-order operations defined in this way is to

[February 18, 2025 at 13:46 – version 4.2]

3.1 introduction 73

modify or copy code. In other words, we forfeit one of the key
attractive modularity features of algebraic effects and handlers.

This modularity problem with higher-order effects (i.e., effects
with higher-order operations) was first observed by Wu et al.
[2014] who proposed scoped effects and handlers [Wu et al., 2014,
Piróg et al., 2018, Yang et al., 2022] as a solution. Scoped effects
and handlers have similar modularity benefits as algebraic effects
and handlers, but works for a wider class of effects, including
many higher-order effects. However, Van den Berg et al. [2021a]
recently observed that operations that defer computation, such as
evaluation strategies for � application or (multi-)staging [Taha and
Sheard, 2000], are beyond the expressiveness of scoped effects.
Therefore, Van den Berg et al. [2021a] introduced another flavor
of effects and handlers that they call latent effects and handlers.

In this paper we present a (surprisingly) simple alternative
solution to the modularity problem with higher-order effects,
which only uses standard effects and handlers and off-the-shelf
generic programming techniques known from, e.g., data types à la
carte [Swierstra, 2008].

3.1.3 Solving the Modularity Problem: Elaboration Algebras

We propose to define elaborations such as censor (Section 3.1.2)
in a modular way. To this end, we introduce a new type of compu-
tations with higher-order effects which can be modularly elaborated
into computations with only standard algebraic effects:

A !!H elaborate����! A !� handle���! Result

Here A !!H is a computation type where A is a return type and H

is a row comprising both algebraic and higher-order effects. The
idea is that the higher-order effects in the row H are modularly
elaborated into the row �. To achieve this, we define elaborate
such that it can be modularly composed from separately defined
elaboration cases, which we call elaboration algebras (for reasons
we explain in Section 3.3). Using A !!H V A !� as the type of
elaboration algebras that elaborate the higher-order effects in H

to �, we can modularly compose any pair of elaboration algebras

[February 18, 2025 at 13:46 – version 4.2]

74 hefty algebras

e1 : A !! H1 V A !� and e2 : A !! H2 V A !� into an algebra
e12 : A !! H1, H2 V A !�.3535 Readers familiar with

data types à la
carte [Swierstra, 2008]

may recognize this as
algebra composition.

Elaboration algebras are as simple to define as non-modular
elaborations such as censor (Section 3.1.2). For example, here is
the elaboration algebra for the higher-order Censor effect whose
only associated operation is the higher-order operation censorop :

(String! String)! A !!H! A !!H:

eCensor : A !! CensorV A ! Output,�

eCensor (censorop f m; k) = do (x, s) (with hOut handle m);

out (f s); k x

The implementation of eCensor is essentially the same as censor.
There are two main differences. First, elaboration happens in-
context, so the value yielded by the elaboration is passed to
the context (or continuation) k. Second, and most importantly,
programs that use the censorop operation are now programmed
against the interface given by Censor, meaning programs do not
(and cannot) make assumptions about how censorop is elaborated.
As a consequence, we can modularly refine the elaboration of
higher-order operations such as censorop, without modifying the
programs that use the operations. For example, the following
program censors and replaces “Hello” with “Goodbye”:3636 This program relies

on the fact that it is
generally possible to lift

computation A !� to
A !!H when � ✓ H.

censorHello : () !! Censor, Output

censorHello = censorop

(�s. if (s ⌘ “Hello”) then “Goodbye” else s)

hello

Say we have a handler hOut0 : (String! String)! A ! Output,�
) (A⇥ String) !� which handles each operation out s by apply-
ing a censor function (String ! String) to s before emitting it.
Using this handler, we can give an alternative elaboration of
censorop which post-processes output strings individually:

eCensor0 : A !! CensorV A ! Output,�

eCensor0 (censorop f m; k) = do x (with hOut0 f handle m);

out s; k x

[February 18, 2025 at 13:46 – version 4.2]

3.1 introduction 75

In contrast, eCensor applies the censoring function (String !
String) to the batch output of the computation argument of a
censorop operation. The batch output of hello is “Hello world!”
which is unequal to “Hello”, so eCensor leaves the string un-
changed. On the other hand, eCensor0 censors the individually
output “Hello”:

with hOut handle (with eCensor elaborate censorHello)

⌘ ((), “Hello world!”)

with hOut handle (with eCensor
0 elaborate censorHello)

⌘ ((), “Goodbye world!”)

Higher-order operations now have the same modularity benefits
as algebraic operations.

3.1.4 Contributions

This paper formalizes the ideas sketched in this introduction by
shallowly embedding them in Agda. However, the ideas tran-
scend Agda. Similar shallow embeddings can be implemented in
other dependently typed languages, such as Idris [Brady, 2013b];
but also in less dependently typed languages like Haskell, OCaml,
or Scala.37 By working in a dependently typed language we can 37 The artifact

accompanying this
paper [Van der Rest and
Bach Poulsen, 2024]
contains a shallow
embedding of
elaboration algebras in
Haskell.

state algebraic laws about interfaces of effectful operations, and
prove that implementations of the interfaces respect the laws. We
make the following technical contributions:

• Section 5.2.3 describes how to encode algebraic effects in
Agda, revisits the modularity problem with higher-order
operations, and summarizes how scoped effects and han-
dlers address the modularity problem, for some (scoped
operations) but not all higher-order operations.

• Section 3.3 presents our solution to the modularity prob-
lem with higher-order operations. Our solution is to (1)
type programs as higher-order effect trees (which we dub
hefty trees), and (2) build modular elaboration algebras for

[February 18, 2025 at 13:46 – version 4.2]

76 hefty algebras

folding hefty trees into algebraic effect trees and handlers.
The computations of type A !!H discussed in Section 3.1.3
correspond to hefty trees, and the elaborations of type
A !!HV A !� correspond to hefty algebras.

• Section 3.4 presents examples of how to define hefty alge-
bras for common higher-order effects from the literature on
effect handlers.

• Section 3.5 shows that hefty algebras support formal and
modular reasoning on a par with algebraic effects and
handlers, by developing reasoning infrastructure that sup-
ports verification of equational laws for higher-order effects
such as exception catching. Crucially, proofs of correctness
of elaborations are compositional. When composing two
proven correct elaboration, correctness of the combined
elaboration follows immediately without requiring further
proof work.

Section 5.6 discusses related work and Section 5.7 concludes.
An artifact containing the code of the paper and a Haskell em-
bedding of the same ideas is available online [Van der Rest and
Bach Poulsen, 2024]. A subset of the contributions of this paper
were previously published in a conference paper [Bach Poulsen
and Van der Rest, 2023]. While that version of the paper too
discusses reasoning about higher-order effects, the correctness
proofs were non-modular, in that they make assumptions about
the order in which the algebraic effects implementing a higher-
order effect are handled. When combining elaborations, these
assumptions are often incompatible, meaning that correctness
proofs for the individual elaborations do not transfer to the
combined elaboration. As a result, one would have to re-prove
correctness for every combination of elaborations. For this ex-
tended version, we developed reasoning infrastructure to support
modular reasoning about higher-order effects in Section 3.5, and
proved that correctness of elaborations is preserved under com-
position of elaborations.

[February 18, 2025 at 13:46 – version 4.2]

3.2 algebraic effects and handlers in agda 77

3.2 algebraic effects and handlers in agda

This section describes how to encode algebraic effects and han-
dlers in Agda. We do not assume familiarity with Agda and
explain Agda specific notation in sidenotes. Sections 3.2.1 to 3.2.4
defines algebraic effects and handlers; Section 3.2.5 revisits the
problem of defining higher-order effects using algebraic effects
and handlers; and Section 3.2.6 discusses how scoped effects [Wu
et al., 2014, Piróg et al., 2018, Yang et al., 2022] solves the problem
for scoped operations but not all higher-order operations.

3.2.1 Algebraic Effects and The Free Monad

We encode algebraic effects in Agda by representing computa-
tions as an abstract syntax tree given by the free monad over an
effect signature. Such effect signatures are traditionally [Awodey,
2010, Swierstra, 2008, Kiselyov and Ishii, 2015, Wu et al., 2014,
Kammar et al., 2013] given by a functor; i.e., a type of kind
Set ! Set together with a (lawful) mapping function.38 In our 38

Set is the type of
types in Agda. More
generally, functors
mediate between
different categories.
For simplicity, this
paper only considers
endofunctors on Set,
where an endofunctor is
a functor whose domain
and codomain coincides;
e.g., Set! Set.

Agda implementation, effect signature functors are defined by
giving a container [Abbott et al., 2003, 2005a]. Each container
corresponds to a value of type Set ! Set that is both strictly
positive and universe consistent [Martin-Löf, 1984], meaning they
are a constructive approximation of endofunctors on Set. Effect
signatures are given by a (dependent) record type:

record Effect : Set1 where
field Op : Set

Ret : Op! Set

Here, Op is the set of operations, and Ret defines the return
type for each operation in the set Op. The extension of an effect
signature, J_K, reflects its input of type Effect as a value of type
Set! Set:

J_K : Effect! Set! Set
J � K X = ⌃ (Op �) � op! Ret � op! X

The extension of an effect � into Set ! Set is indeed a functor,
as witnessed by the following function:39

39 To show that this is
truly a functor, we
should also prove that
map-sig satisfies the
functor laws. We will
not make use of these
functor laws in this
paper, so we omit them.

[February 18, 2025 at 13:46 – version 4.2]

78 hefty algebras

map-sig : (X ! Y)! J � K X ! J � K Y
map-sig f (op , k) = (op , f � k)

As discussed in the introduction, computations may use mul-
tiple different effects. Effect signatures are closed under co-
products:40 4140 The _�_ function

uses copattern
matching:

https://agda.

readthedocs.io/en/

v2.6.2.2/language/

copatterns.html. The
Op line defines how to

compute the Op field of
the record produced by

the function; and
similarly for the Ret

line.
41

] is a disjoint
sum type from the

Agda standard library.
It has two constructors,
inj1 : A! A] B and
inj2 : B! A] B. The

[_,_] function (also
from the Agda standard

library) is the
eliminator for the

disjoint sum type. Its
type is [_,_] :

(A! X) ! (B! X)

! (A] B)! X.

� : Effect! Effect! Effect
Op (�1 � �2) = Op �1] Op �2

Ret (�1 � �2) = [Ret �1 , Ret �2]

We compute the co-product of two effect signatures by taking
the disjoint sum of their operations and combining the return
type mappings pointwise. We co-products to encode effect rows.
For example, The effect �1 � �2 corresponds to the row union
denoted as �1,�2 in the introduction.

The syntax of computations with effects � is given by the free
monad over �. We encode the free monad as follows:

data Free (� : Effect) (A : Set) : Set where
pure : A ! Free � A
impure : J � K (Free � A)! Free � A

Here, pure is a computation with no side effects, whereas impure
is an operation whose syntax is given by the functor J � K. By
applying this functor to Free � A, we encode an operation whose
continuation may contain more effectful operations.42

42 By unfolding the
definition of J_K one

can see that our
definition of the free

monad is identical to
the I/O trees of Hancock

and Setzer [2000], or
the so-called freer

monad of Kiselyov and
Ishii [2015].

To see in
what sense, let us consider an example.

example . The following data type defines an operation for
outputting a string. Below it is its corresponding effect signature.

data OutOp : Set where
out : String ! OutOp

Output : Effect
Op Output = OutOp
Ret Output (out s) = >

[February 18, 2025 at 13:46 – version 4.2]

https://agda.readthedocs.io/en/v2.6.2.2/language/copatterns.html
https://agda.readthedocs.io/en/v2.6.2.2/language/copatterns.html
https://agda.readthedocs.io/en/v2.6.2.2/language/copatterns.html
https://agda.readthedocs.io/en/v2.6.2.2/language/copatterns.html

3.2 algebraic effects and handlers in agda 79

The effect signature says that out returns a unit value (> is
the unit type). Using this, we can write a simple hello world
corresponding to the hello program from Section 3.1:

hello : Free Output >
hello = impure

(out "Hello"
, � _! impure (out " world!" , � x! pure x))

Section 3.2.1 shows how to make this program more readable by
using monadic do notation.

The hello program above makes use of just a single effect. Say
we want to use another effect, Throw, with a single operation,
throw, which represents throwing an exception (therefore having
the empty type ? as its return type):

data ThrowOp : Set where
throw : ThrowOp

Throw : Effect
Op Throw = ThrowOp
Ret Throw throw = ?

Programs that use multiple effects, such as Output and Throw,
are unnecessarily verbose. For example, consider the following
program which prints two strings before throwing an exception:43 43 ?-elim is the

eliminator for the empty
type, encoding the
principle of explosion:
?-elim : ? ! A.

hello-throw : Free (Output � Throw) A
hello-throw = impure (inj1 (out "Hello") , � _!

impure (inj1 (out " world!") , � _!
impure (inj2 throw , ?-elim)))

To reduce syntactic overhead, we use row insertions and smart
constructors [Swierstra, 2008].

3.2.2 Row Insertions and Smart Constructors

A smart constructor constructs an effectful computation compris-
ing a single operation. The type of this computation is polymor-
phic in what other effects the computation has. For example, the
type of a smart constructor for the out effect is:

[February 18, 2025 at 13:46 – version 4.2]

80 hefty algebras

8out : {| Output . � |}! String ! Free � >

Here, the {| Output . � |} type declares the row insertion witness
as an instance argument of 8out. Instance arguments in Agda are
conceptually similar to type class constraints in Haskell: when
we call 8out, Agda will attempt to automatically find a witness of
the right type, and implicitly pass this as an argument [Devriese
and Piessens, 2011]. Thus, calling 8out will automatically inject
the Output effect into some larger effect row �.

We define the . order on effect rows in terms of a different
�1 • �2 ⇡ � which witnesses that any operation of � is isomor-
phic to either an operation of �1 or an operation of �2:44

44 Here$ is the type
of an isomorphism on

Set from the Agda
Standard Library. It is
given by a record with
two fields: the to field

represents the!
direction of the

isomorphism, and from

field represents the
direction of the

isomorphism.

record _•_⇡_ (�1 �2 � : Effect) : Set1 where
field reorder : 8 {X}! J �1 � �2 K X $ J � K X

Using this, the . order is defined as follows:

. : (�1 �2 : Effect)! Set1
�1 . �2 = 9 � �0 ! �1 • �0 ⇡ �2

It is straightforward to show that . is a preorder; i.e., that it is a
reflexive and transitive relation.

We can also define the following function, which uses a �1 . �2

witness to coerce an operation of effect type �1 into an operation
of some larger effect type �2.45

45 The dot notation
w .reorder projects the

reorder field of the
record w.

inj : {| �1 . �2 |}! J �1 K A! J �2 K A
inj {| _ , w |} (c , k) = w .reorder .to (inj1 c , k)

Furthermore, we can freely coerce the operations of a compu-
tation from one effect row type to a different effect row type:46

46 The notation 8[_] is
from the Agda Standard

library, and is defined
as follows:

8[P] = 8 x! P x.

47

47 We can think of the
hmap-free function as a
“higher-order” map for

Free: given a natural
transformation between

(the extension of)
signatures, we can can

transform the signature
of a computation. This

amounts to the
observation that Free is

a functor over the
category of containers

and container
morphisms; assuming
hmap-free preserves

naturality.

hmap-free : 8[J �1 K) J �2 K]! 8[Free �1) Free �2]
hmap-free ✓ (pure x) = pure x
hmap-free ✓ (impure (c , k)) = impure (✓ (c , hmap-free ✓ � k))

Using this infrastructure, we can now implement a generic inject
function which lets us define smart constructors for operations
such as the out operation discussed in the previous subsection.

[February 18, 2025 at 13:46 – version 4.2]

3.2 algebraic effects and handlers in agda 81

inject : {| �1 . �2 |}! Free �1 A! Free �2 A
inject = hmap-free inj
8out : {| Output . � |}! String ! Free � >
8out s = inject (impure (out s , pure))

3.2.3 Fold and Monadic Bind for Free

Since Free � is a monad, we can sequence computations using
monadic bind, which is naturally defined in terms of the fold over
Free.

fold : (A! B)! Alg � B! Free � A! B
fold g a (pure x) = g x
fold g a (impure (op , k)) = a (op , fold g a � k)

Alg : (� : Effect) (A : Set)! Set
Alg � A = J � K A! A

Besides the input computation to be folded (last parameter), the
fold is parameterized by a function A! B (first parameter) which
folds a pure computation, and an algebra Alg � A (second param-
eter) which folds an impure computation. We call the latter an
algebra because it corresponds to an F-algebra [Arbib and Manes,
1975, Pierce, 1991] over the signature functor of �, denoted F�.
That is, a tuple (A,↵) where A is an object called the carrier of
the algebra, and ↵ a morphism F�(A)! A. Using fold, monadic
bind for the free monad is defined as follows:

�= : Free � A! (A! Free � B)! Free � B
m�= g = fold g impure m

Intuitively, m�= g concatenates g to all the leaves in the compu-
tation m.

example . The following defines a smart constructor for throw:

8throw : {| Throw . � |}! Free � A

[February 18, 2025 at 13:46 – version 4.2]

82 hefty algebras

Using this and the definition of�= above, we can use do-notation
in Agda to make the hello-throw program from Section 3.2.1 more
readable:

hello-throw1 : {| Output . � |}! {| Throw . � |}! Free � A
hello-throw1 = do 8out "Hello"; 8out " world!"; 8throw

This illustrates how we use the free monad to write effectful
programs against an interface given by an effect signature. Next,
we define effect handlers.

3.2.4 Effect Handlers

An effect handler implements the interface given by an effect
signature, interpreting the syntactic operations associated with an
effect. Like monadic bind, effect handlers can be defined as a fold
over the free monad. The following type of parameterized handlers
defines how to fold respectively pure and impure computations:

record h_!_)_)_!_i (A : Set) (� : Effect)
(P : Set) (B : Set)
(�0 : Effect) : Set1 where

field ret : A! P! Free �0 B
hdl : Alg � (P! Free �0 B)

A handler of type h A ! �) P) B ! �0 i is parameterized in
the sense that it turns a computation of type Free � A into a
parameterized computation of type P! Free �0 B. The following
function does so by folding using ret, hdl, and a to-front function:

to-front : {| �1 • �2 ⇡ � |}! Free � A! Free (�1 � �2) A
to-front {| w |} = hmap-free (w .reorder .from)

given_handle_ : {| w : �1 • �2 ⇡ � |}

! h A ! �1) P) B ! �2 i
! Free � A! (P! Free �2 B)

given_handle_ h m = fold
(ret h)
(� where (inj1 c , k) p! hdl h (c , k) p

[February 18, 2025 at 13:46 – version 4.2]

3.2 algebraic effects and handlers in agda 83

(inj2 c , k) p! impure (c , flip k p))
(to-front m)

Comparing with the syntax we used to explain algebraic effects
and handlers in the introduction, the ret field corresponds to
the return case of the handlers from the introduction, and hdl
corresponds to the cases that define how operations are handled.
The parameterized handler type h A ! �) P) B ! �0 i corre-
sponds to the type A !�,�0) P ! B !�0, and given h handle m
corresponds to with h handle m.

Using this type of handler, the hOut handler from the intro-
duction can be defined as follows:

hOut : h A ! Output) >) (A ⇥ String) ! � i
ret hOut x _ = pure (x , "")
hdl hOut (out s , k) p = do (x , s0) k tt p; pure (x , s ++ s0)

The handler hOut in Section 3.1.1 did not bind any parameters.
However, since we are encoding it as a parameterized handler,
hOut now binds a unit-typed parameter. Besides this difference,
the handler is the same as in Section 3.1.1. We can use the hOut
handler to run computations. To this end, we introduce a Nil
effect with no associated operations which we will use to indicate
where an effect row ends:

Nil : Effect
Op Nil = ?
Ret Nil = ?-elim

un : Free Nil A! A
un (pure x) = x

Using these, we can run a simple hello world program:48 48 The refl constructor
is from the Agda
standard library, and
witnesses that a
propositional equality
(⌘) holds.

hello0 : {| Output . � |}! Free � >
hello0 = do
8out "Hello"; 8out " world!"

test-hello : un (given hOut handle hello0 $ tt)

[February 18, 2025 at 13:46 – version 4.2]

84 hefty algebras

data StateOp : Set where
get : StateOp
put : N ! StateOp

State : Effect
Op State = StateOp
Ret State get = N

Ret State (put n) = >

hSt : h A ! State) N) (A ⇥ N) ! �0 i
ret hSt x s = pure (x , s)
hdl hSt (put m , k) n = k tt m
hdl hSt (get , k) n = k n n
8incr : {| State . � |}! Free � >
8incr = do n 8get; 8put (n + 1)

incr-test : un ((given hSt handle 8incr) 0) ⌘ (tt , 1)
incr-test = refl

Figure 8: A state effect
(upper), its handler
(hSt below), and a
simple test (incr-test,
also below) which
uses (the elided)
smart constructors for
get and put

⌘ (tt , "Hello world!")
test-hello = refl

An example of parameterized (as opposed to unparameterized)
handlers, is the state effect. Figure 8 declares and illustrates
how to handle such an effect with operations for reading (get)
and changing (put) the state of a memory cell holding a natural
number.

3.2.5 The Modularity Problem with Higher-Order Effects, Revisited

Section 3.1.2 described the modularity problem with higher-order
effects, using a higher-order operation that interacts with output
as an example. In this section we revisit the problem, framing it in
terms of the definitions introduced in the previous section. To this
end, we use a different effect whose interface is summarized by
the CatchM record below. The record asserts that the computation
type M : Set ! Set has at least a higher-order operation catch
and a first-order operation throw:

[February 18, 2025 at 13:46 – version 4.2]

3.2 algebraic effects and handlers in agda 85

record CatchM (M : Set! Set) : Set1 where
field catch : M A! M A! M A

throw : M A

The idea is that throw throws an exception, and catch m1 m2

handles any exception thrown during evaluation of m1 by run-
ning m2 instead. The problem is that we cannot give a modular
definition of operations such as catch using algebraic effects and
handlers alone. As discussed in Section 3.1.2, the crux of the
problem is that algebraic effects and handlers provide limited
support for higher-order operations. However, as also discussed
in Section 3.1.2, we can encode catch in terms of more primitive
effects and handlers, such as the following handler for the Throw
effect:

hThrow : h A ! Throw) >) (Maybe A) ! �0 i
ret hThrow x _ = pure (just x)
hdl hThrow (throw , k) _ = pure nothing

The handler modifies the return type of the computation by
decorating it with a Maybe. If no exception is thrown, ret wraps
the yielded value in a just constructor. If an exception is thrown,
the handler never invokes the continuation k and aborts the
computation by returning nothing instead. We can elaborate catch
into an inline application of hThrow. To do so we make use of
effect masking which lets us “weaken” the type of a computation
by inserting extra effects in an effect row:

]_ : {| �1 . �2 |}! Free �1 A! Free �2 A

Using this, the following elaboration defines a semantics for the
catch operation:49

49 The maybe function
is the eliminator for the
Maybe type. Its first
parameter is for
eliminating a just; the
second for nothing. Its
type is
maybe : (A! B)! B
! Maybe A! B.

50

50 The instance
resolution machinery of
Agda requires some help
to resolve the instance
argument of] here. We
provide a hint to Agda’s
instance resolution
machinery in an
implicit instance
argument that we omit
for readability in the
paper. In the rest of this
paper, we will
occasionally follow the
same convention.

catch : {| Throw . � |}! Free � A! Free � A! Free � A
catch m1 m2

= (] (given hThrow handle m1) tt)�= maybe pure m2

If m1 does not throw an exception, we return the produced value.
If it does, m2 is run.

[February 18, 2025 at 13:46 – version 4.2]

86 hefty algebras

As observed by Wu et al. [2014], programs that use elaborations
such as catch are less modular than programs that only use
plain algebraic operations. In particular, the effect row type of
computations no longer represents the interface of operations
that we use to write programs, since the catch elaboration is
not represented in the effect type at all. So we have to rely on
different machinery if we want to refactor, optimize, or change
the semantics of catch without having to change programs that
use it.

In the next subsection we describe how to define effectful
operations such as catch modularly using scoped effects and
handlers, and discuss how this is not possible for, e.g., operations
representing �-abstraction.

3.2.6 Scoped Effects and Handlers

This subsection gives an overview of scoped effects and handlers.
While the rest of the paper can be read and understood with-
out a deep understanding of scoped effects and handlers, we
include this overview to facilitate comparison with the alternative
solution that we introduce in Section 3.3.

Scoped effects extend the expressiveness of algebraic effects to
support a class of higher-order operations that Wu et al. [2014],
Piróg et al. [2018], Yang et al. [2022] call scoped operations. We
illustrate how scoped effects work, using a freer monad encoding
of the endofunctor algebra approach of Yang et al. [2022]. The
work of Yang et al. [2022] does not include examples of modular
handlers, but the original paper on scoped effects and handlers by
Wu et al. [2014] does. We describe an adaptation of the modular
handling techniques due to Wu et al. [2014] to the endofunctor
algebra approach of Yang et al. [2022].

3.2.6.1 Scoped Programs

Scoped effects extend the free monad data type with an addi-
tional row for scoped operations. The return and call constructors

[February 18, 2025 at 13:46 – version 4.2]

3.2 algebraic effects and handlers in agda 87

of Prog below correspond to the pure and impure constructors of
the free monad, whereas enter is new:

data Prog (� � : Effect) (A : Set) : Set where
return : A ! Prog � � A
call : J � K (Prog � � A) ! Prog � � A
enter : J � K (Prog � � (Prog � � A))! Prog � � A

Here, the enter constructor represents a higher-order operation
with sub-scopes; i.e., computations that themselves return compu-
tations:

Prog � �| {z }
outer

(Prog � �| {z }
inner

A)

This type represents scoped computations in the sense that outer
computations can be handled independently of inner ones, as we
illustrate in Section 3.2.6.2. One way to think of inner computa-
tions is as continuations (or join-points) of sub-scopes.

Using Prog, the catch operation can be defined as a scoped
operation:

data CatchOp : Set where
catch : CatchOp

Catch : Effect
Op Catch = CatchOp
Ret Catch catch = Bool

The effect signature indicates that Catch has two scopes since
Bool has two inhabitants. Following Yang et al. [2022], scoped
operations are handled using a structure-preserving fold over
Prog:

hcata : (8 {X}! X ! G X)
! CallAlg � G
! EnterAlg � G
! Prog � � A! G A

CallAlg : (� : Effect) (G : Set! Set)! Set1
CallAlg � G =

[February 18, 2025 at 13:46 – version 4.2]

88 hefty algebras

{A : Set}! J � K (G A)! G A

EnterAlg : (� : Effect) (G : Set! Set)! Set1
EnterAlg � G =

{A B : Set}! J � K (G (G A))! G A

The first argument represents the case where we are folding a
return node; the second and third correspond to respectively call
and enter.

3.2.6.2 Scoped Effect Handlers

The following defines a type of parameterized scoped effect
handlers:

record h•!_!_)_)_•!_!_i (� � : Effect) (P : Set)
(G : Set! Set)
(�0

�
0 : Effect) : Set1 where

field ret : X ! P! Prog �0
�
0 (G X)

hcall : CallAlg � (� X ! P! Prog �0
�
0 (G X))

henter : EnterAlg � (� X ! P! Prog �0
�
0 (G X))

glue : (k : C! P! Prog �0
�
0 (G X)) (r : G C)! P

! Prog �0
�
0 (G X)

A handler of type h• ! � ! �) P) G •! �0 ! � i handles operations
of � and � simultaneously and turns a computation Prog � � A
into a parameterized computation of type P! Prog �0

�
0 (G A).

The ret and hcall cases are similar to the ret and hdl cases from
Section 3.2.4. The crucial addition which adds support for higher-
order operations is the henter case.

The henter field is given by an EnterAlg case. This case takes
as input a scoped operation whose outer and inner computa-
tion have been folded into a parameterized computation of type
P! Prog �0

�
0 (G X); and returns as output an interpretation of

that operation as a computation of type P ! Prog �0
�
0 (G X).

The glue function is used for modularly weaving [Wu et al., 2014]
side effects of handlers through sub-scopes of yet-unhandled
operations.

[February 18, 2025 at 13:46 – version 4.2]

3.2 algebraic effects and handlers in agda 89

3.2.6.3 Weaving

To see why glue is needed, it is instructional to look at how the
fields in the record type above are used to fold over Prog:

given_handle-scoped_ : {| w1 : �1 • �2 ⇡ � |}

{| w2 : �1 • �2 ⇡ � |}

! h•! �1 ! �1) P) G •! �2 ! �2 i
! Prog � � A! P! Prog �2 �2 (G A)

given h handle-scoped m = hcata (ret h)
�[hcall h

, (� where (c , k) p! call (c , flip k p))]
�[(� {A}! henter h {A})

, (� where
(c , k) p! enter (c ,
� x! map-prog (� y! glue h id y p) (k x p))

)]0

(to-front� (to-front� m))

The second to last line above shows how glue is used. Because
hcata eagerly folds the current handler over scopes (sc), there
is a mismatch between the type that the continuation expects
(B) and the type that the scoped computation returns (G B). The
glue function fixes this mismatch for the particular return type
modification G : Set ! Set of a parameterized scoped effect
handler.

The scoped effect handler for exception catching is thus:51 51 Here,
flip : (A! B! C) !
(B! A! C).hCatch : h•! Throw ! Catch) >) Maybe •! � ! � i

ret hCatch x _ = return (just x)
hcall hCatch (throw , k) _ = return nothing
henter hCatch (catch , k) _ = k true tt�= � where

(just f) ! f tt
nothing ! k false tt�= maybe (_$ tt) (return nothing)

glue hCatch k x _ = maybe (flip k tt) (return nothing) x

The henter field for the catch operation first runs m1. If no ex-
ception is thrown, the value produced by m1 is forwarded to
k. Otherwise, m2 is run and its value is forwarded to k, or its

[February 18, 2025 at 13:46 – version 4.2]

90 hefty algebras

exception is propagated. The glue field of hCatch says that, if an
unhandled exception is thrown during evaluation of a scope, the
continuation is discarded and the exception is propagated; and if
no exception is thrown the continuation proceeds normally.

3.2.6.4 Discussion and Limitations

As observed by Van den Berg et al. [2021a], some higher-order
effects do not correspond to scoped operations. In particular, the
LambdaM record shown below is not a scoped operation:

record LambdaM (V : Set) (M : Set! Set) : Set1 where
field lam : (V ! M V)! M V

app : V ! M V ! M V

The lam field represents an operation that constructs a � value.
The app field represents an operation that will apply the function
value in the first parameter position to the argument computation
in the second parameter position. The app operation has a com-
putation as its second parameter so that it remains compatible
with different evaluation strategies.

To see why the operations summarized by the LambdaM record
above are not scoped operations, let us revisit the enter construc-
tor of Prog:

enter : J � K (Prog � �| {z }
outer

(Prog � �| {z }
inner

A))! Prog � � A

As summarized earlier in this subsection, enter lets us represent
higher-order operations (specifically, scoped operations), whereas
call does not (only algebraic operations). Just like we defined the
computational parameters as scopes (given by the outer Prog in
the type of enter), we might try to define the body of a lambda as
a scope in a similar way. However, whereas the catch operation
always passes control to its continuation (the inner Prog), the lam
effect is supposed to package the body of the lambda into a value
and pass this value to the continuation (the inner computation).
Because the inner computation is nested within the outer com-
putation, the only way to gain access to the inner computation (the

[February 18, 2025 at 13:46 – version 4.2]

3.3 hefty trees and algebras 91

continuation) is by first running the outer computation (the body of the
lambda). This does not give us the right semantics.

It is possible to elaborate the LambdaM operations into more
primitive effects and handlers, but as discussed in Sections 3.1.2
and 3.2.5, such elaborations are not modular. In the next section
we show how to make such elaborations modular.

3.3 hefty trees and algebras

As observed in Section 3.2.5, operations such as catch can be
elaborated into more primitive effects and handlers. However,
these elaborations are not modular. We solve this problem by
factoring elaborations into interfaces of their own to make them
modular.

To this end, we first introduce a new type of abstract syntax
trees (Sections 3.3.1 to 3.3.3) representing computations with
higher-order operations, which we dub hefty trees (an acronymic
pun on higher-order ef fects). We then define elaborations as alge-
bras (hefty algebras; Section 3.3.4) over these trees. The following
pipeline summarizes the idea, where H is a higher-order effect
signature:

Hefty H A elaborate����! Free � A handle���! Result

For the categorically inclined reader, Hefty conceptually cor-
responds to the initial algebra of the functor HeftyF H A R =

A+H R (R A) where H : (Set ! Set) ! (Set ! Set) defines
the signature of higher-order operations and is a higher-order
functor, meaning we have both the usual functorial map : (X !
Y) ! H F X ! H F Y for any functor F as well as a function
hmap : Nat(F,G) ! Nat(H F,H G) which lifts natural trans-
formations between any F and G to a natural transformation
between H F and H G. A hefty algebra is then an F-algebra over a
higher-order signature functor H. The notion of elaboration that
we introduce in Section 3.3.4 is an F-algebra whose carrier is a
“first-order” effect tree (Free �).

In this section, we encode this conceptual framework in Agda
using a container-inspired approach to represent higher-order

[February 18, 2025 at 13:46 – version 4.2]

92 hefty algebras

signature functors H as a strictly positive type. We discuss and
compare our approach with previous work in Section 3.3.5.

3.3.1 Generalizing Free to Support Higher-Order Operations

As summarized in Section 3.2.1, Free � A is the type of abstract
syntax trees representing computations over the effect signature
�. Our objective is to arrive at a more general type of abstract syn-
tax trees representing computations involving (possibly) higher-
order operations. To realize this objective, let us consider how to
syntactically represent this variant of the censor operation (Sec-
tion 3.1.2), where M is the type of abstract syntax trees whose
type we wish to define:

censorop : (String! String) ! M > ! M >

We call the second parameter of this operation a computation pa-
rameter. Using Free, computation parameters can only be encoded
as continuations. But the computation parameter of censorop is
not a continuation, since

do (censorop f m); 8out s 6⌘ censorop f (do m; 8out s).

The crux of the issue is how signature functors J � K : Set! Set
are defined. Since this is an endofunctor on Set, the only suitable
option in the impure constructor is to apply the functor to the
type of continuations:

impure : J � K (Free � A| {z }
continuation

)! Free � A

A more flexible approach would be to allow signature func-
tors to build computation trees with an arbitrary return type,
including the return type of the continuation. A higher-order
signature functor of some higher-order signature H, written
J H KH : (Set ! Set) ! Set ! Set, would fit that bill. Using

[February 18, 2025 at 13:46 – version 4.2]

3.3 hefty trees and algebras 93

such a signature functor, we could define the impure case as
follows:

impure : J H KH (Hefty H| {z }
computation

type

)

continuation
return type

z}|{
A ! Hefty H A

Here, Hefty is the type of the free monad using higher-order
signature functors instead. In the rest of this subsection, we
consider how to define higher-order signature functors H, their
higher-order functor extensions J_KH, and the type of Hefty trees.

Recall how we defined plain algebraic effects in terms of con-
tainers:

record Effect : Set1 where
field Op : Set

Ret : Op! Set

Here, Op is the type of operations, and Ret defines the return
type of each operation. In order to allow operations to have sub-
computations, we generalize this type to allow each operation to
be associated with a number of sub-computations, where each
sub-computation can have a different return type. The following
record provides this generalization:

record EffectH : Set1 where
field OpH : Set - As before

RetH : OpH ! Set - As before

Fork : OpH ! Set - New

Ty : {op : OpH} (: Fork op)! Set - New

The set of operations is still given by a type field (OpH), and
each operation still has a return type (RetH). Fork associates each
operation with a type that indicates how many sub-computations
(or forks) an operation has, and Ty indicates the return type of
each such fork. For example, say we want to encode an operation
op with two sub-computations with different return types, and

[February 18, 2025 at 13:46 – version 4.2]

94 hefty algebras

whose return type is of a unit type. That is, using M as our type
of computations:

op : M Z ! M N ! M >

The following signature declares a higher-order effect signature
with a single operation with return type >, and with two forks
(we use Bool to encode this fact), and where each fork has, re-
spectively Z and N as return types.

example-op : EffectH

OpH example-op = > - A single operation

RetH example-op tt = > - with return type >
Fork example-op tt = Bool - with two forks

Ty example-op false = Z - one fork has type Z

Ty example-op true = N - the other has type N

The extension of higher-order effect signatures implements the
intuition explained above:

J_KH : EffectH ! (Set! Set)! Set! Set
J H KH M X = ⌃ (OpH H) � op!

(RetH H op! M X) ⇥ ((: Fork H op)! M (Ty H))

Let us unpack this definition.

⌃ (OpH H) � op!| {z }
(1)

(RetH H op! M X| {z }
(2)

) ⇥ ((: Fork H op)| {z }
(3)

! M (Ty H)| {z }
(4)

)

The extension of a higher-order signature functor is given by (1)
the sum of operations of the signature, where each operation has
(2) a continuation (of type M X) that expects to be passed a value
of the operation’s return type, and (3) a set of forks where each
fork is (4) a computation that returns the expected type for each
fork.

Using the higher-order signature functor and its extension
above, our generalized free monad becomes:

[February 18, 2025 at 13:46 – version 4.2]

3.3 hefty trees and algebras 95

data Hefty (H : EffectH) (A : Set) : Set where
pure : A! Hefty H A
impure : J H KH (Hefty H) A! Hefty H A

This type of Hefty trees can be used to define higher-order opera-
tions with an arbitrary number of computation parameters, with
arbitrary return types. Using this type, and using a co-product
for higher-order effect signatures (_u_) which is analogous to
the co-product for algebraic effect signatures in Section 3.2.2,
Figure 9 represents the syntax of the censorop operation.

data CensorOp : Set where
censor : (String ! String)

! CensorOp

Censor : EffectH

OpH Censor = CensorOp
RetH Censor (censor f) = >
Fork Censor (censor f) = >
Ty Censor {censor f} tt = >

censorop : (String ! String)! Hefty (Censor u H) > ! Hefty (Censor u H) >
censorop f m = impure (inj1 (censor f) , (� where tt! m) , pure)

Figure 9: A higher-
order censor effect
and operation, with
a single computation
parameter (declared
with Op = > in
the effect signature
top right) with return
type > (declared with
Ret = � _ ! > top
right)

Just like Free, Hefty trees can be sequenced using monadic
bind. Unlike for Free, the monadic bind of Hefty is not expressible
in terms of the standard fold over Hefty trees. The difference
between Free and Hefty is that Free is a regular data type whereas
Hefty is a nested datatype [Bird and Paterson, 1999]. The fold of a
nested data type is limited to describe natural transformations. As
Bird and Paterson [1999] show, this limitation can be overcome
by using a generalized fold, but for the purpose of this paper it
suffices to define monadic bind as a recursive function:

�= : Hefty H A! (A! Hefty H B)! Hefty H B
pure x �= g = g x
impure (op , k , s)�= g = impure (op , (_�= g) � k , s)

The bind behaves similarly to the bind for Free; i.e., m �= g
concatenates g to all the leaves in the continuations (but not
computation parameters) of m.

[February 18, 2025 at 13:46 – version 4.2]

96 hefty algebras

In Section 3.3.4 we show how to modularly elaborate higher-
order operations into more primitive algebraic effects and han-
dlers (i.e., computations over Free), by folding modular elabora-
tion algebras (hefty algebras) over Hefty trees. First, we show (in
Section 3.3.2) how Hefty trees support programming against an
interface of both algebraic and higher-order operations. We also
address (in Section 3.3.3) the question of how to encode effect
signatures for higher-order operations whose computation pa-
rameters have polymorphic return types, such as the highlighted
A below:

8catch : Hefty H A ! Hefty H A ! Hefty H A

3.3.2 Programs with Algebraic and Higher-Order Effects

Any algebraic effect can be lifted to a higher-order effect signature
with no fork (i.e., no computation parameters):

Lift : Effect! EffectH

OpH (Lift �) = Op �
RetH (Lift �) = Ret �
Fork (Lift �) = � _! ?
Ty (Lift �) = �()

Using this effect signature, and using higher-order effect row
insertion witnesses analogous to the ones we defined and used
in Section 3.2.2, the following smart constructor lets us represent
any algebraic operation as a Hefty computation:

"_ : {| w : Lift � .H H |}! (op : Op �)! Hefty H (Ret � op)

Using this notion of lifting, Hefty trees can be used to program
against interfaces of both higher-order and plain algebraic effects.

3.3.3 Higher-Order Operations with Polymorphic Return Types

Let us consider how to define Catch as a higher-order effect.
Ideally, we would define an operation that is parameterized by
a return type of the branches of a particular catch operation, as

[February 18, 2025 at 13:46 – version 4.2]

3.3 hefty trees and algebras 97

shown on the left, such that we can define the higher-order effect
signature on the right:52 52

d is for dubious.

data CatchOpd : Set1 where
catchd : Set! CatchOpd

Catchd : EffectH

OpH Catchd = CatchOpd

RetH Catchd (catchd A) = A
Fork Catchd (catchd A) = Bool
Ty Catchd {catchd A} _ = A

The Fork field on the right says that the Catch operation has two
sub-computations (since Bool has two constructors), and that
each computation parameter has some return type A. However,
the signature on the right above is not well defined!

The problem is that, because CatchOpd has a constructor that
quantifies over a type (Set), the CatchOpd type lives in Set1. Conse-
quently it does not fit the definition of EffectH, whose operations
live in Set. There are two potential solutions to this problem:
(1) increase the universe level of EffectH to allow OpH to live
in Set1; or (2) use a universe of types [Martin-Löf, 1984]. Either
solution is applicable here. However, for some operations (e.g.,
� in Section 3.4.1) it is natural to model types as an interface
that we are programming against. For this reason, using a type
universe is a natural fit.

A universe of types is a (dependent) pair of a syntax of types
(Ty : Set) and a semantic function (J_KT : Ty ! Set) defining the
meaning of the syntax by reflecting it into Agda’s Set:

record Univ : Set1 where
field Type : Set

J_KT : Type! Set

Using type universes, we can parameterize the catch construc-
tor on the left below by a syntactic type Ty of some universe u,
and use the meaning of this type (J t KT) as the return type of
the computation parameters in the effect signature on the right
below:

[February 18, 2025 at 13:46 – version 4.2]

98 hefty algebras

data CatchOp {| u : Univ |} : Set where
catch : Type! CatchOp

Catch : {| u : Univ |}! EffectH

OpH Catch = CatchOp
RetH Catch (catch t) = J t KT
Fork Catch (catch t) = Bool
Ty Catch {catch t} = � _! J t KT

While the universe of types encoding restricts the kind of type
that catch can have as a return type, the effect signature is para-
metric in the universe. Thus the implementer of the Catch effect
signature (or interface) is free to choose a sufficiently expressive
universe of types.

3.3.4 Hefty Algebras

As shown in Section 3.2.5, the higher-order catch operation can
be encoded as a non-modular elaboration:

catch m1 m2

= (] ((given hThrow handle m1) tt))�= (maybe pure m2)

We can make this elaboration modular by expressing it as an alge-
bra over Hefty trees containing operations of the Catch signature.
To this end, we will use the following notion of hefty algebra
(AlgH) and fold (or catamorphism [Meijer et al., 1991], cataH) for
Hefty:

record AlgH (H : EffectH) (F : Set! Set) : Set1 where
field alg : J H KH F A! F A

cataH : (8 {A}! A! F A)! AlgH H F! Hefty H A! F A
cataH g a (pure x) = g x
cataH g a (impure (op , k , s))

= alg a (op , ((cataH g a � k) , (cataH g a � s)))

Here AlgH defines how to transform an impure node of type
Hefty H A into a value of type F A, assuming we have already

[February 18, 2025 at 13:46 – version 4.2]

3.3 hefty trees and algebras 99

folded the computation parameters and continuation into F val-
ues. A nice property of algebras is that they are closed under
higher-order effect signature sums:

g : AlgH H1 F! AlgH H2 F! AlgH (H1 u H2) F
alg (A1 g A2) (inj1 op , k , s) = alg A1 (op , k , s)
alg (A1 g A2) (inj2 op , k , s) = alg A2 (op , k , s)

By defining elaborations as hefty algebras (below) we can com-
pose them using _g_.

Elaboration : EffectH ! Effect! Set1
Elaboration H � = AlgH H (Free �)

An Elaboration H � elaborates higher-order operations of sig-
nature H into algebraic operations of signature �. Given an
elaboration, we can generically transform any hefty tree into
more primitive algebraic effects and handlers:

elaborate : Elaboration H �! Hefty H A! Free � A
elaborate = cataH pure

example . The elaboration below is analogous to the non-
modular catch elaboration discussed in Section 3.2.5 and in the
beginning of this subsection:

eCatch : {| u : Univ |} {| w : Throw . � |}! Elaboration Catch �
alg (eCatch {| w = w |}) (catch t , k , s) =

(] ((given hThrow handle s true) tt))�= maybe k (s false�= k)

The elaboration is essentially the same as its non-modular coun-
terpart, except that it now uses the universe of types encoding
discussed in Section 3.3.3, and that it now transforms syntactic
representations of higher-order operations instead. Using this
elaboration, we can, for example, run the following example
program involving the state effect from Figure 8, the throw effect
from Section 3.2.1, and the catch effect defined here:

transact : {| ws : Lift State .H H |} {| wt : Lift Throw .H H |}

{| w : Catch .H H |}

[February 18, 2025 at 13:46 – version 4.2]

100 hefty algebras

! Hefty H N

transact = do
" put 1
8catch (do " (put 2); (" throw)�= ?-elim) (pure tt)
" get

The program first sets the state to 1; then to 2; and then throws
an exception. The exception is caught, and control is immediately
passed to the final operation in the program which gets the state.
By also defining elaborations for Lift and Nil, we can elaborate
and run the program:

eTransact : {| _ : Throw . � |} {| _ : State . � |}

! Elaboration
(Catch u Lift Throw u Lift State u Lift Nil) �

eTransact = eCatch g eLift g eLift g eNil

test-transact : un ((given hSt
handle ((given hThrow

handle (
elaborate eTransact transact)

) tt))
0) ⌘ (just 2 , 2)

test-transact = refl

The program above uses a so-called global interpretation of state,
where the put operation in the “try block” of 8catch causes the
state to be updated globally. In Section 3.4.2.2 we return to this
example and show how we can modularly change the elaboration
of the higher-order effect Catch to yield a so-called transactional
interpretation of state where the put operation in the try block is
rolled back when an exception is thrown.

3.3.5 Discussion and Limitations

Which (higher-order) effects can we describe using hefty trees
and algebras? Since the core mechanism of our approach is mod-
ular elaboration of higher-order operations into more primitive

[February 18, 2025 at 13:46 – version 4.2]

3.3 hefty trees and algebras 101

effects and handlers, it is clear that hefty trees and algebras are
at least as expressive as standard algebraic effects. The crucial
benefit of hefty algebras over algebraic effects is that higher-order
operations can be declared and implemented modularly. In this
sense, hefty algebras provide a modular abstraction layer over
standard algebraic effects that, although it adds an extra layer
of indirection by requiring both elaborations and handlers to
give a semantics to hefty trees, is comparatively cheap and imple-
mented using only standard techniques such as F-algebras. As we
show in Section 3.5, hefty algebras also let us define higher-order
effect theories, akin to algebraic effect theories.

Conceptually, we expect that hefty trees can capture any monadic
higher-order effect whose signature is given by a higher-order
functor on Set ! Set. Filinski [1999] showed that any monadic
effect can be represented using continuations, and given that we
can encode the continuation monad using algebraic effects [Schri-
jvers et al., 2019] in terms of the sub/jump operations from Sec-
tion 3.4.2.2 by Thielecke [1997], Fiore and Staton [2014], it is
possible to elaborate any monadic effect into algebraic effects
using hefty algebras. The current Agda implementation, though,
is slightly more restrictive. The type of effect signatures, EffectH,
approximates the set of higher-order functors by constructively
enforcing that all occurrences of the computation type are strictly
positive. Hence, there may be higher-order effects that are well-
defined semantically, but which cannot be captured in the Agda
encoding presented here.

Recent work by Van den Berg and Schrijvers [2023] introduced
a higher-order free monad that coincides with our Hefty type.
Their work shows that hefty trees are, in fact, a free monad.
Furthermore, they demonstrate that a range of existing effects
frameworks from the literature can be viewed as instances of
hefty trees.

When comparing hefty trees to scoped effects, we observe two
important differences. The first difference is that the syntax of
programs with higher-order effects is fundamentally more re-
strictive when using scoped effects. Specifically, as discussed at
the end of Section 3.2.6.4, scoped effects impose a restriction on

[February 18, 2025 at 13:46 – version 4.2]

102 hefty algebras

operations that their computation parameters must pass control
directly to the continuation of the operation. Hefty trees, on the
other hand, do not restrict the control flow of computation pa-
rameters, meaning that they can be used to define a broader class
of operations. For instance, in Section 3.4.1 we define a higher-
order effect for function abstraction, which is an example of an
operation where control does not flow from the computation
parameter to the continuation.

The second difference is that hefty algebras and scoped ef-
fects and handlers are modular in different ways. Scoped effects
are modular because we can modularly define, compose, and
handle scoped operations, by applying scoped effect handlers in
sequence; i.e.:

Prog �0 �0 A0

h1�! Prog �1 �1 A1

h2�! · · · hn��! Prog Nil Nil An

As discussed in Section 3.2.6.3, each handler application modu-
larly “weaves” effects through sub computations, using a dedi-
cated glue function. Hefty algebras, on the other hand, work by
applying an elaboration algebra assembled from modular com-
ponents in one go. The program resulting from elaboration can
then be handled using standard algebraic effect handlers; i.e.:

Hefty (H0 u · · · u Hm) A
elaborate (E0 g ··· g Em)����������������!

Free � A

h1�! · · · hk�!
Free Nil Ak

Because hefty algebras eagerly elaborate all higher-order effects
in one go, they do not require similar “weaving” as scoped
effect handlers. A consequence of this difference is that scoped
effect handlers exhibit more effect interaction by default; i.e.,
different permutations of handlers may give different semantics.
In contrast, when using hefty algebras we have to be more explicit
about such effect interactions. We discuss this difference in more
detail in Section 3.4.2.2.

[February 18, 2025 at 13:46 – version 4.2]

3.4 examples 103

3.4 examples

As discussed in Section 3.2.5, there is a wide range of examples of
higher-order effects that cannot be defined as algebraic operations
directly, and are typically defined as non-modular elaborations
instead. In this section we give examples of such effects and show
to define them modularly using hefty algebras. The artifact [Van
der Rest and Bach Poulsen, 2024] contains the full examples.

3.4.1 � as a Higher-Order Operation

As recently observed by Van den Berg et al. [2021a], the (higher-
order) operations for � abstraction and application are neither
algebraic nor scoped effects. We demonstrate how hefty algebras
allow us to modularly define and elaborate an interface of higher-
order operations for � abstraction and application, inspired by
Levy’s call-by-push-value [Levy, 2004]. The interface we will con-
sider is parametric in a universe of types given by the following
record:

record LamUniv : Set1 where
field {| u |} : Univ

⇢ : Type! Type! Type
c : Type! Type

The _⇢_ field represents a function type, whereas c is the type
of thunk values. Distinguishing thunks in this way allows us to
assign either a call-by-value or call-by-name semantics to the
interface for � abstraction summarized by the following smart
constructors:
8lam : {t1 t2 : Type}! (J c t1 KT ! Hefty H J t2 KT)

! Hefty H J (c t1)⇢ t2 KT
8var : {t : Type} ! J c t KT

! Hefty H J t KT
8app : {t1 t2 : Type}! J (c t1)⇢ t2 KT ! Hefty H J t1 KT

! Hefty H J t2 KT

Here 8lam is a higher-order operation with a function typed com-
putation parameter and whose return type is a function value

[February 18, 2025 at 13:46 – version 4.2]

104 hefty algebras

(J c t1⇢ t2 KT). The 8var operation accepts a thunk value as argu-
ment and yields a value of a matching type. – The 8app operation
is also a higher-order operation: its first parameter is a function
value type, whereas its second parameter is a computation pa-
rameter whose return type matches the function value parameter
type.

The interface above defines a kind of higher-order abstract syn-
tax [Pfenning and Elliott, 1988] which piggy-backs on Agda
functions for name binding. However, unlike most Agda func-
tions, the constructors above represent functions with side effects.
The representation in principle supports functions with arbitrary
side effects since it is parametric in what the higher-order effect
signature H is. Furthermore, we can assign different operational
interpretations to the operations in the interface without having
to change the interface or programs written against the interface.
To illustrate we give two different implementations of the inter-
face: one that implements a call-by-value evaluation strategy, and
one that implements call-by-name.

3.4.1.1 Call-by-Value

We give a call-by-value interpretation 8lam by generically elab-
orating to algebraic effect trees with any set of effects �. Our
interpretation is parametric in proof witnesses that the following
isomorphisms hold for value types ($ is the type of isomor-
phisms from the Agda standard library):5353 The two sides of an

isomorphism A$ B are
given by the functions

to : A! B and
from : B! A.

iso1 : {t1 t2 : Type}! J t1 ⇢ t2 KT $ (J t1 KT ! Free � J t2 KT)
iso2 : {t : Type} ! J c t KT $ J t KT

The first isomorphism says that a function value type corresponds
to a function which accepts a value of type t1 and produces
a computation whose return type matches the function type.
The second says that thunk types coincide with value types.
Using these isomorphisms, the following defines a call-by-value
elaboration of functions:

eLamCBV : Elaboration Lam �

alg eLamCBV (lam , k ,) = k (from)

[February 18, 2025 at 13:46 – version 4.2]

3.4 examples 105

alg eLamCBV (var x , k , _) = k (to x)
alg eLamCBV (app f , k ,) = do

a tt
v to f (from a)
k v

The lam case passes the function body given by the sub-tree
as a value to the continuation, where the from function mediates
the sub-tree of type J c t1 KT ! Free � J t2 KT to a value type
J (c t1)⇢ t2 KT , using the isomorphism iso1. The var case uses
the to function to mediate a J c t KT value to a J t KT value, using
the isomorphism iso2. The app case first eagerly evaluates the
argument expression of the application (in the sub-tree) to
an argument value, and then passes the resulting value to the
function value of the application. The resulting value is passed
to the continuation.

Using the elaboration above, we can evaluate programs such
as the following which uses both the higher-order lambda effect,
the algebraic state effect, and assumes that our universe has a
number type J num KT $ N:

ex : Hefty (Lam u Lift State u Lift Nil) N

ex = do
" put 1
f 8lam (� x! do

n1 8var x
n2 8var x
pure (from ((to n1) + (to n2))))

v 8app f incr
pure (to v)
where incr = do s0 " get

" put (s0 + 1)
s1 " get
pure (from s1)

The program first sets the state to 1. Then it constructs a function
that binds a variable x, dereferences the variable twice, and adds
the two resulting values together. Finally, the application in the

[February 18, 2025 at 13:46 – version 4.2]

106 hefty algebras

second-to-last line applies the function with an argument expres-
sion which increments the state by 1 and returns the resulting
value. Running the program produces 4 since the state increment
expression is eagerly evaluated before the function is applied.

elab-cbv : Elaboration (Lam u Lift State u Lift Nil) (State � Nil)
elab-cbv = eLamCBV g eLift g eNil

test-ex-cbv : un ((given hSt handle (elaborate elab-cbv ex)) 0)
⌘ (4 , 2)

test-ex-cbv = refl

3.4.1.2 Call-by-Name

The key difference between the call-by-value and the call-by-name
interpretation of our � operations is that we now assume that
thunks are computations. That is, we assume that the following
isomorphisms hold for value types:

iso1 : {t1 t2 : Type}! J t1 ⇢ t2 KT $ (J t1 KT ! Free � J t2 KT)
iso2 : {t : Type} ! J c t KT $ Free � J t KT

Using these isomorphisms, the following defines a call-by-name
elaboration of functions:

eLamCBN : Elaboration Lam �

alg eLamCBN (lam , k ,) = k (from)
alg eLamCBN (var x , k , _) = to x�= k
alg eLamCBN (app f , k ,) = to f (from (tt))�= k

The case for lam is the same as the call-by-value elaboration.
The case for var now needs to force the thunk by running the
computation and passing its result to k. The case for app passes
the argument sub-tree () as an argument to the function f , runs
the computation resulting from doing so, and then passes its
result to k. Running the example program ex from above now
produces 5 as result, since the state increment expression in the
argument of 8app is thunked and run twice during the evaluation
of the called function.

[February 18, 2025 at 13:46 – version 4.2]

3.4 examples 107

elab-cbn : Elaboration (Lam u Lift State u Lift Nil) (State � Nil)
elab-cbn = eLamCBN g eLift g eNil

test-ex-cbn : un ((given hSt handle (elaborate elab-cbn ex)) 0)
⌘ (5 , 3)

test-ex-cbn = refl

3.4.2 Optionally Transactional Exception Catching

A feature of scoped effect handlers [Wu et al., 2014, Piróg et al.,
2018, Yang et al., 2022] is that changing the order of handlers
makes it possible to obtain different semantics of effect interaction.
A classical example of effect interaction is the interaction between
state and exception catching that we briefly considered at the
end of Section 3.3.4 in connection with this transact program:

transact : {| ws : Lift State .H H |} {| wt : Lift Throw .H H |}

{| w : Catch .H H |}

! Hefty H N

transact = do
" put 1
8catch (do " put 2; (" throw)�= ?-elim) (pure tt)
" get

The state and exception catching effect can interact to give either
of these two semantics:

1. Global interpretation of state, where the transact program
returns 2 since the put operation in the “try” block causes
the state to be updated globally.

2. Transactional interpretation of state, where the transact pro-
gram returns 1 since the state changes of the put operation
are rolled back when the “try” block throws an exception.

With monad transformers [Cenciarelli and Moggi, 1993, Liang
et al., 1995b] we can recover either of these semantics by permut-
ing the order of monad transformers. With scoped effect handlers
we can also recover either by permuting the order of handlers.

[February 18, 2025 at 13:46 – version 4.2]

108 hefty algebras

h (8sub (� _ ! p) k) ⌘ h p

h (8sub (� r! m�= 8jump r) k) ⌘ h (m�= k)

h (8sub p (8jump r0)) ⌘ h (p r0)

h (8sub p q�= k) ⌘ h (8sub (� x! p x�= k) (� x! q x�= k))

Figure 10: Laws for
the 8sub and 8jump op-
erations

However, the eCatch elaboration in Section 3.3.4 always gives us a
global interpretation of state. In this section we demonstrate how
we can recover a transactional interpretation of state by using a
different elaboration of the catch operation into an algebraically
effectful program with the throw operation and the off-the-shelf
sub/jump control effects due to Thielecke [1997], Fiore and Staton
[2014]. The different elaboration is modular in the sense that we
do not have to change the interface of the catch operation nor
any programs written against the interface.

3.4.2.1 Sub/Jump

We recall how to define two operations, sub and jump, due to Thi-
elecke [1997], Fiore and Staton [2014]. We define these operations
as algebraic effects following Schrijvers et al. [2019]. The alge-
braic effects are summarized by the following smart constructors
where CC Ref is associated with the sub/jump operations:

8sub : {| w : CC Ref . � |} (b : Ref t! Free � A)
! (k : J t KT ! Free � A)! Free � A

8jump : {| w : CC Ref . � |} (ref : Ref t) (x : J t KT)! Free � B

An operation 8sub f g gives a computation f access to the continua-
tion g via a reference value Ref t which represents a continuation
expecting a value of type J t KT . The 8jump operation invokes
such continuations. The operations and their handler (abbrevi-
ated to h) satisfy the laws shown in Figure 10. The last law in
Figure 10 asserts that 8sub and 8jump are algebraic operations, since

[February 18, 2025 at 13:46 – version 4.2]

3.4 examples 109

their computational sub-terms behave as continuations. Thus, we
encode 8sub and its handler as an algebraic effect.

3.4.2.2 Optionally Transactional Exception Catching

By using the 8sub and 8jump operations in our elaboration of catch,
we get a semantics of exception catching whose interaction with
state depends on the order that the state effect and sub/jump
effect is handled.

eCatchOT : {| w1 : CC Ref . � |} {| w2 : Throw . � |}

! Elaboration Catch �
alg eCatchOT (catch x , k ,) =

let m1 = true; m2 = false in
8sub (� r! (] ((given hThrow handle m1) tt))

�= maybe k (8jump r (from tt)))
(� _! m2 �= k)

The elaboration uses 8sub to capture the continuation of a higher-
order catch operation. If no exception is raised, then control
flows to the continuation k without invoking the continuation
of 8sub. Otherwise, we jump to the continuation of 8sub, which
runs m2 before passing control to k. Capturing the continuation
in this way interacts with state because the continuation of 8sub
may have been pre-applied to a state handler that only knows
about the “old” state. This happens when we invoke the state
handler before the handler for sub/jump: in this case we get
the transactional interpretation of state, so running transact gives
1. Otherwise, if we run the sub/jump handler before the state
handler, we get the global interpretation of state and the result 2.

The sub/jump elaboration above is more involved than the
scoped effect handler that we considered in Section 3.2.6. How-
ever, the complicated encoding does not pollute the higher-order
effect interface, and only turns up if we strictly want or need
effect interaction.

[February 18, 2025 at 13:46 – version 4.2]

110 hefty algebras

3.4.3 Logic Programming

Following Schrijvers et al. [2014], Wu et al. [2014], Yang et al.
[2022] we can define a non-deterministic choice operation (_8or_)
as an algebraic effect, to provide support for expressing the kind
of non-deterministic search for solutions that is common in logic
programming. We can also define a 8fail operation which indicates
that the search in the current branch was unsuccessful. The smart
constructors below are the lifted higher-order counterparts to the
8or and 8fail operations:

8orH : {| Lift Choice .H H |}! Hefty H A! Hefty H A
! Hefty H A

8failH : {| Lift Choice .H H |}! Hefty H A

A useful operator for cutting non-deterministic search short when
a solution is found is the 8once operator. The 8once operator is not
an algebraic effect, but a scoped (and thus higher-order) effect.

8once : {| w : Once .H H |} {t : Type}
! Hefty H J t KT ! Hefty H J t KT

We can define the meaning of the once operator as the following
elaboration:

eOnce : {| Choice . � |}! Elaboration Once �
alg eOnce (once , k ,) = do

l] ((given hChoice handle (tt)) tt)
maybe k 8fail (head l)

The elaboration runs the branch () of once under the hChoice
handler to compute a list of all solutions of . It then tries to
choose the first solution and pass that to the continuation k. If the
branch has no solutions, we fail. Under a strict evaluation order,
the elaboration computes all possible solutions which is doing
more work than needed. Agda 2.6.2.2 does not have a specified
evaluation strategy, but does compile to Haskell which is lazy. In
Haskell, the solutions would be lazily computed, such that the
once operator cuts search short as intended.

[February 18, 2025 at 13:46 – version 4.2]

3.4 examples 111

3.4.4 Concurrency

Finally, we consider how to define higher-order operations for
concurrency, inspired by Yang et al.’s [2022] resumption monad (see
also [Claessen, 1999, Schmidt, 1986, Piróg and Gibbons, 2014])
definition using scoped effects. We summarize our encoding and
compare it with the resumption monad. The goal is to define the
following operations:

8spawn : {t : Type}! (m1 m2 : Hefty H J t KT)! Hefty H J t KT
8atomic : {t : Type}! Hefty H J t KT ! Hefty H J t KT

The operation 8spawn m1 m2 spawns two threads that run con-
currently, and returns the value produced by m1 after both have
finished. The operation 8atomic m represents a block to be ex-
ecuted atomically; i.e., no other threads run before the block
finishes executing.

We elaborate 8spawn by interleaving the sub-trees of its compu-
tations. To this end, we use a dedicated function which interleaves
the operations in two trees and yields as output the value of the
left input tree (the first computation parameter):

interleavel : {Ref : Type! Set}! Free (CC Ref � �) A
! Free (CC Ref � �) B! Free (CC Ref � �) A

Here, the CC effect is the sub/jump effect that we also used in
Section 3.4.2.2. The interleavel function ensures atomic execution
by only interleaving code that is not wrapped in a 8sub operation.
We elaborate Concur into CC as follows, where the to-front and
from-front functions use the row insertion witness wa to move
the CC effect to the front of the row and back again:

eConcur : {| w : CC Ref . � |}! Elaboration Concur �
alg eConcur (spawn t , k ,) =

from-front (interleavel (to-front (true)) (to-front (false)))
�= k

alg eConcur (atomic t , k ,) =
8sub (� ref ! tt�= 8jump ref) k

The elaboration uses 8sub as a delimiter for blocks that should not
be interleaved, such that the interleavel function only interleaves

[February 18, 2025 at 13:46 – version 4.2]

112 hefty algebras

code that does not reside in atomic blocks. At the end of an
atomic block, we 8jump to the (possibly interleaved) computation
context, k. By using 8sub to explicitly delimit blocks that should
not be interleaved, we have encoded what Wu et al. [2014, § 7]
call scoped syntax.

example . Below is an example program that spawns two
threads that use the Output effect. The first thread prints 0, 1, and
2; the second prints 3 and 4.

ex-01234 : Hefty (Lift Output u Concur u Lift Nil) N

ex-01234 = 8spawn (do " out "0"; " out "1"; " out "2"; pure 0)
(do " out "3"; " out "4"; pure 0)

Since the Concur effect is elaborated to interleave the effects of
the two threads, the printed output appears in interleaved order:

test-ex-01234 : un ((given hOut
handle

((given hCC
handle

(elaborate
concur-elab ex-01234)

) tt)) tt) ⌘ (0 , "03142")
test-ex-01234 = refl

The following program spawns an additional thread with an
8atomic block

ex-01234567 : Hefty (Lift Output u Concur u Lift Nil) N

ex-01234567 =
8spawn ex-01234

(8atomic (do " out "5"; " out "6"; " out "7"; pure 0))

Inspecting the output, we see that the additional thread indeed
computes atomically:

test-ex-01234567 : un ((given hOut
handle

((given hCC

[February 18, 2025 at 13:46 – version 4.2]

3.5 modular reasoning for higher-order effects 113

handle
(elaborate

concur-elab ex-01234567)
) tt)) tt) ⌘ (0 , "05673142")

test-ex-01234567 = refl

The example above is inspired by the resumption monad, and
in particular by the scoped effects definition of concurrency due
to Yang et al. [2022]. Yang et al. do not (explicitly) consider how
to define the concurrency operations in a modular style. Instead,
they give a direct semantics that translates to the resumption
monad which we can encode as follows in Agda (assuming
resumptions are given by the free monad):

data Resumption � A : Set where
done : A ! Resumption � A
more : Free � (Resumption � A)! Resumption � A

We could elaborate into this type using a hefty algebra AlgH Con-
cur (Resumption �) but that would be incompatible with our
other elaborations which use the free monad. For that reason, we
emulate the resumption monad using the free monad instead of
using the Resumption type directly.

3.5 modular reasoning for higher-order effects

A key aspect of algebraic effects and handlers is the ability to
state and prove equational laws that characterize correct implemen-
tations of effectful operations. Usually, an effect comes equipped
with multiple laws that govern its intended behavior. An ef-
fect and its laws is generally known as as effect theory [Hyland
et al., 2006, Plotkin and Power, 2002, 2003, Yang and Wu, 2021].
This concept of effect theory extends to higher-order effect theories,
which describe the intended behavior of higher-order effects.
In this section, we first discuss how to define theories for alge-
braic effects in Agda by adapting the exposition of Yang and Wu
[2021], and show how correctness of implementations with re-
spect to a given theory can be stated and proved. We then extend

[February 18, 2025 at 13:46 – version 4.2]

114 hefty algebras

this reasoning infrastructure to higher-order effects, allowing
for modular reasoning about the correctness of elaborations of
higher-order effects.

Let us consider the state effect as an example, which comprises
the get and put operations. With the state effect, we typically
associate a set of equations (or laws) that specify how its im-
plementations ought to behave. One such law is the get-get law,
which captures the intuition that the state returned by two sub-
sequent get operation does not change if we do not use the put
operation in between:

8get�= �s! 8get�= �s0! k s s
0 ⌘ 8get�= �s! k s s

We an define equational laws for higher-order effects in a similar
fashion. For example, the following catch-return law for the 8catch
operation of the Catch effect, stating that catching exceptions in
a computation that only returns a value does nothing.

8catch (pure x) m ⌘ pure x

Correctness of an implementation of an algebraic effect with
respect to a given theory is defined by comparing the implemen-
tations of programs that are equal under that theory. That is, if
we can show that two programs are equal using the equations of
a theory for its effects, handling the effects should produce equal
results. For instance, a way to implement the state effect is by
mapping programs to functions of the form S ! S⇥A. Such an
implementation would be correct if programs that are equal with
respect to a theory of the state effect are mapped to functions
that give the same value and output state for every input state.

For higher-order effects, correctness is defined in a similar
manner. However, since we define higher-order effects by elabo-
rating them into algebraic effects, correctness of elaborations with
respect to a higher-order effect theory is defined by comparing
the elaborated programs. Crucially, the elaborated programs do
not have to be syntactically equal, but rather we should be able
to prove them equal using a theory of the algebraic effects used
to implement a higher-order effect.

[February 18, 2025 at 13:46 – version 4.2]

3.5 modular reasoning for higher-order effects 115

Effect theories are known to be closed under the co-product of
effects, by combining the equations into a new theory that con-
tains all equations for both effects [Hyland et al., 2006]. Similarly,
theories of higher-order effects are closed under sums of higher-
order effect signatures. In Section 3.5.8, we show that composing
two elaborations preserves their correctness, with respect to the
sum of their respective theories.

3.5.1 Theories of Algebraic Effects

Theories of effects are collections of equations, so we start defin-
ing the type of equations in Agda. At its core, an equation for an
effect � is given by a pair of effect trees of type Free � A, that
define the left- and right-hand side of the equation. However,
looking at the get-get law above, we see that this equation con-
tains a term metavariable; i.e., k. Furthermore, when considering
the type of k, which is S ! S ! Free � A, we see that it refers
to a type metavariable; i.e., A. Generally speaking, an equation
may refer to any number of term metavariables, which, in turn,
may depend on any number of type metavariables. Moreover, the
type of the value returned by the left hand side and right hand
side of an equation may depend on these type metavariables as
well, as is the case for the get-get law above. This motivates the
following definition of equations in Agda.

record Equation (� : Effect) : Set1 where
field

V : N

� : Vec Set V ! Set
R : Vec Set V ! Set
lhs rhs : (vs : Vec Set V)! � vs! Free � (R vs)

An equation consists of five components. The field V defines the
number of type metavariables used in the equation. Then, the
fields � and R define the term metavariables respectively return
type of the equation. Both may depend on the type metavariables
of the equation, hence they depend on a vector of length V
containing unapplied substitutions for all type metavariables.

[February 18, 2025 at 13:46 – version 4.2]

116 hefty algebras

Finally, the left-hand side (lhs) and right-hand side (rhs) of the
equation are then defined as functions of type Free � (R vs),
which depend on unapplied substitutions for both the type and
term level metavariables that the equation can refer to.

example . To illustrate how the Equation record captures
equational laws of effects, we consider how to define the get-
get as a value of type Equation State. Recall that the equation
depends on one type metavariable, and one term metavariable.
Furthermore, the return type of the programs on the left and
right hand sides should be equal to this type metavariable.

get-get : Equation State
V get-get = 1
� get-get = � where (A :: [])! N ! N ! Free State A
R get-get = � where (A :: [])! A

Since there is exactly one term metavariable, we equate � to the
type of this metavariable. For equations with more than one
metavariable, we would define � as a product of the types of all
term metavariables. The fields lhs and rhs for the get-get law are
then defined as follows:

lhs get-get (A :: []) k = 8get�= � s! 8get�= � s0 ! k s s0

rhs get-get (A :: []) k = 8get�= � s! k s s

3.5.2 Modal Necessity

The current definition of equations is too weak, in the sense that
it does not apply in many situations where it should. The issue
is that it fixes the set of effects that can be used in the left- and
right-hand side. To illustrate why this is problematic, consider
the following equality:

get�= �s! get�= �s0 ! throw ⌘ get�= �s! throw (1)

We might expect to be able to prove this equality using the get-get
law, but using the embedding of the law defined above—i.e.,

[February 18, 2025 at 13:46 – version 4.2]

3.5 modular reasoning for higher-order effects 117

get-get—this is not possible. The reason for this is that we cannot
pick an appropriate instantiation for the term metavariable k: it
ranges over values of type S ! S ! Free State A, inhibiting
all references to effectful operation that are not part of the state
effect, such as throw.

Given an equation for the effect �, the solution to this problem
is to view � as a lower bound on the effects that might occur in
the left-hand and right-hand side of the equation, rather than an
exact specification. Effectively, this means that we close over all
posible contexts of effects in which the equation can occur. This
pattern of closing over all possible extensions of a type index is
well-known [Allais et al., 2021, Van der Rest et al., 2022b], and
corresponds to a shallow embedding of the Kripke semantics
of the necessity modality from modal logic. We can define it in
Agda as follows.

record ⇤ (P : Effect! Set1) (� : Effect) : Set1 where
constructor necessary
field
⇤h_i : 8 {�0}! {| � . �0 |}! P �0

Intuitively, the ⇤ modality transforms, for any effect-indexed
type (P : Effect! Set1), an exact specification of the set of effects
to a lower bound on the set of effects. For equations, the difference
between terms of type Equation � and ⇤ Equation � amounts
to the former defining an equation relating programs that have
exactly effects �, while the latter defines an equation relating
programs that have at least the effects � but potentially more.
The ⇤ modality is a comonad: the counit (extract below) witnesses
that we can always transform a lower bound on effects to an
exact specification, by instantiating the extension witness with a
proof of reflexivity.

extract : {P : Effect! Set1}! ⇤ P �! P �
extract px = ⇤h px i {| .-refl |}

We can now redefine the get-get law such that it applies to all
programs that have the State effect, but potentially other effects
too.

[February 18, 2025 at 13:46 – version 4.2]

118 hefty algebras

get-get : ⇤ Equation State
V ⇤h get-get i = 1
� ⇤h get-get i (A :: []) = N ! N ! Free _ A
R ⇤h get-get i (A :: []) = A
lhs ⇤h get-get i (A :: []) k = 8get�= � s! 8get�= � s0 ! k s s0

rhs ⇤h get-get i (A :: []) k = 8get�= � s! k s s

The above definition of the get-get law now lets us prove the
equality in Equation (1); the term metavariable k ranges ranges
over all continuations that return a tree of type Free �0 A, for
all �0 such that State . �0. This way, we can instantiate �0 with
an effect signature that subsumes both the State and the Throw,
which in turn allows us to instantiate k with throw.

3.5.3 Effect Theories

Equations for an effect � can be combined into a theory for �. A
theory for the effect � is simply a collection of equations, trans-
formed using the ⇤ modality to ensure that term metavariables
can range over programs that include more effects than just �.

record Theory (� : Effect) : Set1 where
field

arity : Set
equations : arity ! ⇤ Equation �

An effect theory consists of an arity, that defines the number of
equations in the theory, and a function that maps arities to equa-
tions. We can think of effect theories as defining a specification
for how implementations of an effect ought to behave. Although
implementations may vary, depending for example on whether
they are tailored to readability or efficiency, they should at least
respect the equations of the theory of the effect they implement.
We will make precise what it means for an implementation to
respect an equation in Section 3.5.5.

Effect theories are closed under several composition operations
that allow us to combine the equations of different theories into
single theory. The most basic way of combining effect theories is
by summing their arities.

[February 18, 2025 at 13:46 – version 4.2]

3.5 modular reasoning for higher-order effects 119

h+i : Theory �! Theory �! Theory �
arity (T1 h+i T2) = arity T1] arity T2

equations (T1 h+i T2) (inj1 a) = equations T1 a
equations (T1 h+i T2) (inj2 a) = equations T2 a

This way of combining effects is somewhat limiting, as it imposes
that the theories we are combining are theories for the exact same
effect. It is more likely, however, that we would want to combine
theories for different effects. This requires that we can weaken
effect theories with respect to the _._ relation.

weaken-⇤ : {P : Effect! Set1}! {| �1 . �2 |}

! ⇤ P �1 ! ⇤ P �2

⇤h weaken-⇤ {| w |} px i {| w0 |} = ⇤h px i {| .-trans w w0 |}

weaken-theory : {| �1 . �2 |}! Theory �1 ! Theory �2

arity (weaken-theory T) = arity T
equations (weaken-theory T) = � a! weaken-⇤ (T .equations a)

Categorically speaking, the observation that for a given effect-
indexed type P we can transform a value of type P �1 to a value
of type P �2 if we know that �1 . �2 is equivalent to saying
that P is a functor from the category of containers and container
morphisms to the categorie of sets. From this perspective, the
existence of weakening for free Free, as witnessed by the] op-
eration discussed in Section 3.3 implies that it too is a such a
functor.

With weakening for theories at our disposal, we can combine
effect theories for different effects into a theory of the coprod-
uct of their respective effects. This requires us to first define
appropriate witnesses relating coproducts to effect inclusion.

.-�-left : �1 . (�1 � �2)

.-�-right : �2 . (�1 � �2)

It is now straightforward to show that effect theories are closed
under the coproduct of effect signatures, by summing the weak-
ened theories.

[+] : Theory �1 ! Theory �2 ! Theory (�1 � �2)
T1 [+] T2 =

[February 18, 2025 at 13:46 – version 4.2]

120 hefty algebras

weaken-theory {| .-�-left |} T1

h+i weaken-theory {| .-�-right |} T2

While this operation is in principle sufficient for our purposes, it
forces a specific order on the effects of the combined theories. We
can further generalize the operation above to allow for the effects
of the combined theory to appear in any order. This requires the
following instances.

.-•-left : {| �1 • �2 ⇡ � |}! �1 . �

.-•-right : {| �1 • �2 ⇡ � |}! �2 . �

We show that effect theories are closed under coproducts up to
reordering by, again, summing the weakened theories.

compose-theory : {| �1 • �2 ⇡ � |}

! Theory �1 ! Theory �2 ! Theory �
compose-theory T1 T2 =

weaken-theory {| .-•-left |} T1

h+i weaken-theory {| .-•-right |} T2

Since equations are defined by storing the syntax trees that define
their left-hand and right-hand side, and effect trees are weaken-
able, we would expect equations to be weakenable too. Indeed,
we can define the following function witnessing weakenability
of equations.

weaken-eq : {| �1 . �2 |}! Equation �1 ! Equation �2

This begs the question: why would we opt to use weakenability of
the⇤modality (or, bother with the⇤modality at all) to show that
theories are weakenable, rather than using weaken-eq directly?
Although the latter approach would indeed allow us to define
the composition operations for effect theories defined above, the
possible ways in which we can instantiate term metavariables
remains too restrictive. That is, we still would not be able to prove
the equality in Equation (1), despite the fact that we can weaken
the get-get law so that it applies to programs that use the Throw
effect as well. Instantiations of the term metavariable k will be

[February 18, 2025 at 13:46 – version 4.2]

3.5 modular reasoning for higher-order effects 121

limited to weakened effect trees, precluding any instantiation
that use operations of effects other than State, such as throw.

Finally, we define the following predicate to witness that an
equation is part of a theory.

J : ⇤ Equation �! Theory �! Set1
eq J T = 9 � a! T .equations a ⌘ eq

We construct a proof eq J T that an equation eq is part of a theory
T by providing an arity together with a proof that T maps to eq
for that arity.

3.5.4 Syntactic Equivalence of Effectful Programs

As discussed, propositional equality of effectful programs is too
strict, as it precludes us from proving equalities that rely on
a semantic understanding of the effects involved, such as the
equality in Equation (1). The solution is to define an inductive
relation that captures syntactic equivalence modulo some effect
theory. We base our definition of syntactic equality of effectful
programs on the relation defining equivalent computations by
Yang and Wu [2021], Definition 3.1, adapting their definition
where necessary to account for the use of modal necessity in the
definition of Theory.

data _⇡h_i_ {� �0} {| _ : � . �0 |} : (m1 : Free �0 A)
! Theory �
! (m2 : Free �0 A)
! Set1 where

A value of type m1 ⇡h T i m2 witnesses that programs m1 and
m2 are equal modulo the equations of theory T. The first three
constructors ensure that it is an equivalence relation.

⇡-refl : m ⇡h T i m
⇡-sym : m1 ⇡h T i m2 ! m2 ⇡h T i m1

⇡-trans : m1 ⇡h T i m2 ! m2 ⇡h T i m3 ! m1 ⇡h T i m3

Then, we add the following congruence rule, that establish that
we can prove equality of two programs starting with the same

[February 18, 2025 at 13:46 – version 4.2]

122 hefty algebras

operation by proving that the continuations yield equal programs
for every possible value.

⇡-cong : (op : Op �0)
! (k1 k2 : Ret �0 op! Free �0 A)
! (8 x! k1 x ⇡h T i k2 x)
! impure (op , k1) ⇡h T i impure (op , k2)

The final constructor allows to prove equality of programs by
reifying equations of an effect theory.

⇡-eq : (eq : ⇤ Equation �)
! (px : eq J T)
! (vs : Vec Set (V (⇤h eq i)))
! (� : � (⇤h eq i) vs)
! (k : R (⇤h eq i) vs! Free �0 A)
! (lhs (⇤h eq i) vs ��= k)
⇡h T i (rhs (⇤h eq i) vs ��= k)

Since the equations of a theory are wrapped in the ⇤ modality,
we cannot refer to its components directly, but we must first
provide a suitable extension witness.

With the ⇡-eq constructor, we can prove equivalence between
the left-hand and right-hand side of an equation, sequenced
with an arbitrary continuation k. For convenience, we define the
following lemma that allows us to apply an equation where the
sides of the equation do not have a continuation.

use-equation : {| _ : � . �0 |}

! {T : Theory �}
! (eq : ⇤ Equation �)
! eq J T
! (vs : Vec Set (V ⇤h eq i))
! {� : � (⇤h eq i) vs}
! lhs (⇤h eq i) vs � ⇡h T i rhs (⇤h eq i) vs �

The definition of use-equation follows readily from the right-
identity law for monads, i.e., m �= pure ⌘ m, which allows us
to instantiate ⇡-eq with pure.

[February 18, 2025 at 13:46 – version 4.2]

3.5 modular reasoning for higher-order effects 123

To construct proofs of equality it is convenient to use the fol-
lowing set of combinators to write proof terms in an equational
style. They are completely analogous to the combinators com-
monly used to construct proofs of Agda’s propositional equality,
for example, as found in PLFA [Wadler et al., 2020].

module ⇡-Reasoning (T : Theory �) {| _ : � . �0 |} where

begin_ : {m1 m2 : Free �0 A}
! m1 ⇡h T i m2 ! m1 ⇡h T i m2

begin eq = eq

_⌅ : (m : Free �0 A)! m ⇡h T i m
m ⌅ = ⇡-refl

⇡hhii : (m1 : Free �0 A) {m2 : Free �0 A}
! m1 ⇡h T i m2 ! m1 ⇡h T i m2

m1 ⇡hhii eq = eq

_⇡hh_ii_ : (m1 {m2 m3} : Free �0 A)
! m1 ⇡h T i m2 ! m2 ⇡h T i m3 ! m1 ⇡h T i m3

m1 ⇡hh eq1 ii eq2 = ⇡-trans eq1 eq2

We now have all the necessary tools to prove syntactic equality
of programs modulo a theory of their effect. To illustrate, we
consider how to prove the equation in Equation (1). First, we
define a theory for the State effect containing the get-getJ law.
While this is not the only law typically associated with State, for
this example it is enough to only have the get-get law.

StateTheory : Theory State
arity StateTheory = >
equations StateTheory tt = get-get

Now to prove the equality in Equation (1) is simply a matter of
invoking the get-get law.

get-get-throw :
{| _ : Throw . � |} {| _ : State . � |}

! (8get�= � s! 8get�= � s0 ! 8throw {A = A})
⇡h StateTheory i (8get�= � s! 8throw)

get-get-throw {A = A} = begin

[February 18, 2025 at 13:46 – version 4.2]

124 hefty algebras

8get�= (� s! 8get�= (� s0 ! 8throw))
⇡hh use-equation get-get (tt , refl) (A :: []) ii
8get�= (� s! 8throw)
⌅

where open ⇡-Reasoning StateTheory

3.5.5 Handler Correctness

A handler is correct with respect to a given theory if handling
syntactically equal programs yields equal results. Since handlers
are defined as algebras over effect signatures, we start by defining
what it means for an algebra of an effect � to respect an equation
of the same effect, adapting Definition 2.1 from the exposition of
Yang and Wu [2021].

Respects : Alg � A! Equation �! Set1
Respects alg eq = 8 {vs � k}!

fold k alg (lhs eq vs �) ⌘ fold k alg (rhs eq vs �)

An algebra alg respects an equation eq if folding with that algebra
produces propositionally equal results for the left- and right-hand
side of the equation, for all possible instantiations of its type and
term metavariables, and continuations k.

A handler H is correct with respect to a given theory T if its
algebra respects all equations of T [Yang and Wu, 2021, Definition
4.3].

Correct : {P : Set}! Theory �! h A ! �) P) B ! �0 i ! Set1
Correct T H = 8 {eq}! eq J T ! Respects (H .hdl) (extract eq)

We can now show that the handler for the State effect defined in
Figure 8 is correct with respect to StateTheory. The proof follows
immediately by reflexivity.

hStCorrect : Correct {A = A} {�0 = �} StateTheory hSt
hStCorrect (tt , refl) {_ :: []} {� = k} = refl

[February 18, 2025 at 13:46 – version 4.2]

3.5 modular reasoning for higher-order effects 125

3.5.6 Theories of Higher-Order Effects

For the most part, equations and theories for higher-order effects
are defined in the same way as for first-order effects and support
many of the same operations. Indeed, the definition of equations
ranging over higher-order effects is exactly the same as its first-
order counterpart, the most major difference being that the left-
hand and right-hand side are now defined as Hefty trees. To
ensure compatibility with the use of type universes to avoid
size-issues, we must also allow type metavariables to range over
the types in a universe in addition to Set. For this reason, the
set of type metavariables is no longer described by a natural
number, but rather by a list of kinds, which stores for each type
metavariable whether it ranges over a types in a universe, or an
Agda Set.

data Kind : Set where set type : Kind

A TypeContext carries unapplied substitutions for a given set of
type metavariables, and is defined by induction over a list of
kinds.

TypeContext : List Kind! Set1
TypeContext [] = Level.Lift _ >
TypeContext (set :: vs) = Set ⇥ TypeContext vs
TypeContext (type :: vs) =

Level.Lift (s` 0`) Type ⇥ TypeContext vs

Equations of higher-order effects are then defined as follows.

record EquationH (H : EffectH) : Set1 where
field

V : List Kind
� : TypeContext V ! Set
R : TypeContext V ! Set
lhs rhs : (vs : TypeContext V)! � vs! Hefty H (R vs)

This definition of equations suffers the same problem when it
comes to term metavariables, which here too can only range over
programs that exhibit the exact effect that the equation is defined

[February 18, 2025 at 13:46 – version 4.2]

126 hefty algebras

for. Again, we address the issue using an embedding of modal
necessity to close over all possible extensions of this effect. The
definition is analogous to the one in Section 3.5.2, but this time
we use higher-order effect subtyping as the modal accessibility
relation:

record ⇤ (P : EffectH ! Set1) (H : EffectH) : Set1 where
constructor necessary
field ⇤h_i : 8 {H0}! {| H .H H0 |}! P H0

To illustrate: we can define the catch-return law from the introduc-
tion of this section as a value of type ⇤ EquationH Catch a follows.
Since the 8catch operation relies on a type universe to avoid size
issues, the sole type metavariable of this equation must range
over the types in this universe as well.

catch-return : ⇤ EquationH Catch
V ⇤h catch-return i = type :: []
� ⇤h catch-return i (lift t , _) = J t KT ⇥ Hefty _ J t KT
R ⇤h catch-return i (lift t , _) = J t KT
lhs ⇤h catch-return i _ (x , m) = 8catch (pure x) m
rhs ⇤h catch-return i _ (x , m) = pure x

Theories of higher-order effects bundle extensible equations.
The setup is the same as for theories of first-order effects.

record TheoryH (H : EffectH) : Set1 where
field

arity : Set
equations : arity ! ⇤ EquationH H

The following predicate establishes that an equation is part of
a theory. We prove this fact by providing an arity whose corre-
sponding equation is equal to eq.

JH : ⇤ EquationH H ! TheoryH H ! Set1
eq JH Th = 9 � a! eq ⌘ equations Th a

Weakenability of theories of higher-order effects then follows
from weakenability of its equations.

[February 18, 2025 at 13:46 – version 4.2]

3.5 modular reasoning for higher-order effects 127

weaken-⇤ : 8 {P}! {| H1 .
H H2 |}! ⇤ P H1 ! ⇤ P H2

⇤h weaken-⇤ {| w |} px i {| w0 |} = ⇤h px i {| .H-trans w w0 |}

weaken-theoryH : {| H1 .
H H2 |}! TheoryH H1 ! TheoryH H2

arity (weaken-theoryH Th) = Th .arity
equations (weaken-theoryH Th) a = weaken-⇤ (Th .equations a)

Theories of higher-order effects can be combined using the
following sum operation. The resulting theory contains all equa-
tions of both argument theories.

h+iH : 8[TheoryH) TheoryH) TheoryH]
arity (Th1 h+iH Th2) = arity Th1] arity Th2
equations (Th1 h+iH Th2) (inj1 a) = equations Th1 a
equations (Th1 h+iH Th2) (inj2 a) = equations Th2 a

Theories of higher-order effects are closed under sums of higher-
order effect theories as well. This operation is defined by appro-
priately weakening the respective theories, for which we need the
following lemmas witnessing that higher-order effect signatures
can be injected in a sum of signatures.

.-u-left : H1 .
H (H1 u H2)

.-u-right : H2 .
H (H1 u H2)

The operation that combines theories under signature sums is
then defined like so.

[+]H : TheoryH H1 ! TheoryH H2 ! TheoryH (H1 u H2)
Th1 [+]H Th2 =

weaken-theoryH {| .-u-left |} Th1
h+iH weaken-theoryH {| .-u-right |} Th2

3.5.7 Equivalence of Programs with Higher-Order Effects

We define the following inductive relation to capture equivalence
of programs with higher-order effects modulo the equations of a
given theory.

[February 18, 2025 at 13:46 – version 4.2]

128 hefty algebras

data _⇠=h_i_ {| _ : H1 .
H H2 |} : (m1 : Hefty H2 A)

! TheoryH H1

! (m2 : Hefty H2 A)
! Set1 where

To ensure that it is indeed an equivalence relation, we include
constructors for reflexivity, symmetry, and transitivity.

⇠=-refl : 8 {m : Hefty H2 A}
! m ⇠=h Th i m

⇠=-sym : 8 {m1 : Hefty H2 A} {m2}
! m1

⇠=h Th i m2

! m2
⇠=h Th i m1

⇠=-trans : 8 {m1 : Hefty H2 A} {m2 m3}
! m1

⇠=h Th i m2 ! m2
⇠=h Th i m3

! m1
⇠=h Th i m3

Furthermore, we include the following congruence rule that
equates two program trees that have the same operation at the
root, if their continuations are equivalent for all inputs.

⇠=-cong : (op : OpH H2)
! (k1 k2 : RetH H2 op! Hefty H2 A)
! (s1 s2 : (: Fork H2 op)! Hefty H2 (Ty H2))
! (8 {x}! k1 x ⇠=h Th i k2 x)
! (8 { }! s1 ⇠=h Th i s2)
! impure (op , k1 , s1) ⇠=h Th i impure (op , k2 , s2)

Finally, we include a constructor that equates two programs using
an equation of the theory.

⇠=-eq : (eq : ⇤ EquationH H1)
! eq JH Th
! (vs : TypeContext (V ⇤h eq i))
! (� : � ⇤h eq i vs)
! (k : R ⇤h eq i vs! Hefty H2 A)

[February 18, 2025 at 13:46 – version 4.2]

3.5 modular reasoning for higher-order effects 129

! (lhs ⇤h eq i vs ��= k)
⇠=h Th i (rhs ⇤h eq i vs ��= k)

We can define the same reasoning combinators to construct proofs
of equivalence for programs with higher-order effects.

module ⇠=-Reasoning {| _ : H1 .
H H2 |} (Th : TheoryH H1) where

begin_ : {m1 m2 : Hefty H2 A}
! m1

⇠=h Th i m2 ! m1
⇠=h Th i m2

begin eq = eq

_⌅ : (c : Hefty H2 A)! c ⇠=h Th i c
c ⌅ = ⇠=-refl

⇠=hhii : (m1 : Hefty H2 A) {m2 : Hefty H2 A}
! m1

⇠=h Th i m2 ! m1
⇠=h Th i m2

c1 ⇠=hhii eq = eq

_⇠=hh_ii_ : (c1 {c2 c3} : Hefty H2 A)
! c1 ⇠=h Th i c2 ! c2 ⇠=h Th i c3 ! c1 ⇠=h Th i c3

c1 ⇠=hh eq1 ii eq2 = ⇠=-trans eq1 eq2

To illustrate, we can prove that the programs catch throw (censor f m)

and censor f m are equal under a theory for the afCatch effect
that contains the catch-return law.

catch-return-censor : 8 {t : Type} {f} {x : J t KT}
{m : Hefty H J t KT}
! {| _ : Catch .H H |}

! {| _ : Censor .H H |}

! 8catch (pure x) (8censor f m)
⇠=h CatchTheory i pure x

catch-return-censor {f = f} {x = x} {m = m} =
begin
8catch (pure x) (8censor f m)

⇠=hh use-equationH catch-return (tt , refl) _ ii
pure x
⌅

where open ⇠=-Reasoning _

[February 18, 2025 at 13:46 – version 4.2]

130 hefty algebras

The equivalence proof above makes, again, essential use of modal
necessity. That is, by closing over all possible extensions of the
Catch effe, the term metavariable in the catch-return law to range
over programs that have higher-order effects other than Catch,
which is needed to apply the law if the second branch of the
catch operation contains the censor operation.

3.5.8 Correctness of Elaborations

As the first step towards defining correctness of elaborations, we
must specify what it means for an algebra over a higher-order
effect signature H to respect an equation. The definition is broadly
similar to its counterpart for first-order effects in Section 3.5.5,
with the crucial difference that the definition of “being equation
respecting” for algebras over higher-order effect signatures is
parameterized over a binary relation _⇡_ between first-order
effect trees. In practice, this binary relation will be instantiated
with the inductive equivalence relation defined in Section 3.5.4;
propositional equality would be too restrictive, since that does
not allow us prove equivalence of programs using equations of
the first-order effect(s) that we elaborate into.

RespectsH : (_⇡_ : 8 {A}! Free � A! Free � A! Set1)
! AlgH H (Free �)! EquationH H ! Set1

RespectsH _⇡_ alg eq =
8 {vs �}! cataH pure alg (lhs eq vs �)

⇡ cataH pure alg (rhs eq vs �)

Since elaborations are composed in parallel, the use of neces-
sity in the defintion of equations has additional consequences for
the definiton of elaboration correctness. That is, correctness of
an elaboration is defined with respect to a theory whose equa-
tions have left-hand and right-hand sides that may contain term
metavariables that range over programs with more higher-order
effects than those the elaboration is defined for. Therefore, to
state correctness, we must also close over all possible ways these
additional effects are elaborated. For this, we define the following
binary relation on extensible elaborations.

[February 18, 2025 at 13:46 – version 4.2]

3.5 modular reasoning for higher-order effects 131

record _v_ (e1 : ⇤ (Elaboration H1) �1)
(e2 : ⇤ (Elaboration H2) �2) : Set1 where

field
{| .-eff |} : �1 . �2

{| .H-eff |} : H1 .
H H2

preserves-cases
: 8 {M} (m : J H1 KH M A)
! (e0 : 8[M) Free �2])
! ⇤h e1 i .alg (map-sigH (� {x}! e0 {x}) m)
⌘ extract e2 .alg

(map-sigH (� {x}! e0 {x}) (injH {X = A} m))

A proof of the form e1 v e2 witnesses that the elaboration e1
is included in e2. Informally, this means that e2 may elaborate a
bigger set of higher-order effects, for which it may need to refer
to a bigger set of first-order effects, but for those higher-order
effects that both e1 and e2 know how to elaborate, they should
agree on how those effects are elaborated.

We then define correctness of elaborations as follows.

CorrectH : TheoryH H ! Theory �
! ⇤ (Elaboration H) �! Set1

CorrectH Th T e =
8 {�0 H0}
! (e0 : ⇤ (Elaboration H0) �0)
! {| _ : e v e0 |}
! {eq : ⇤ EquationH _}
! eq JH Th
! RespectsH (_⇡h T i_) (extract e0) ⇤h eq i

Which is to say that an elaboration is correct with respect to a
theory of the higher-order effects it elaborates (Th) and a theory
of the first-order effects it elaborates into (T), if all possible exten-
sions of said elaboration respect all equations of the higher-order
theory, modulo the equations of the first-order theory.

Crucially, correctness of elaborations is preserved under com-
position of elaborations. Figure 11 shows the type of the corre-
sponding correctness theorem in Agda; for the full details of
the proof we refer to the Agda formalization accompanying this

[February 18, 2025 at 13:46 – version 4.2]

132 hefty algebras

paper [Van der Rest and Bach Poulsen, 2024]. We remark that
correctness of a composed elaboration is defined with respect
to the composition of the theories of the first-order effects that
the respective elaborations use. Constructing a handler that is
correct with respect to this composed first-order effect theory is
a separate concern; a solution based on fusion is detailed in the
work by Yang and Wu [2021].

compose-elab-correct : {| _ : �1 • �2 ⇡ � |}

! (e1 : ⇤ (Elaboration H1) �1)
! (e2 : ⇤ (Elaboration H2) �2)
! (T1 : Theory �1)
! (T2 : Theory �2)
! (Th1 : TheoryH H1)
! (Th2 : TheoryH H2)
! CorrectH Th1 T1 e1
! CorrectH Th2 T2 e2
! CorrectH (Th1 [+]H Th2) (compose-theory T1 T2)

(compose-elab e1 e2)

Figure 11: The cen-
tral correctness theo-
rem establishing that
correctness of elabora-
tions is preserved un-
der composition

3.5.9 Proving Correctness of Elaborations

To illustrate how the reasoning infrastructure build up in this
section can be applied to verify correctness of elaborations, we
show how to verify the catch-return law for the elaboration eCatch
defined in Section 3.3.4. First, we define the following syntax for
invoking a known elaboration.

module Elab (e : ⇤ (Elaboration H) �) where
EJ_K : Hefty H A! Free � A
EJ m K = elaborate (extract e) m

When opening the module Elab, we can use the syntax EJ mK
for elaborating m with some known elaboration, which helps

[February 18, 2025 at 13:46 – version 4.2]

3.5 modular reasoning for higher-order effects 133

to simplify and improve readability of equational proofs for
higher-order effects.

Now, to prove that eCatch is correct with respect to a higher-
order theory for the Catch effect containing the catch-return law,
we must produce a proof that the programs E 8catch (return x) m K
and EJ return K are equal (in the sense of the inductive equivalence
relation defined in Section 3.5.4) with respect to some first-order
theory for the Throw effect. In this instance, we do not need any
equations from this underlying theory to prove the equality, but
sometimes it is necessary to invoke equations of the underlying
first-order effects to prove correctness of an elaboration.

eCatchCorrect : {T : Theory Throw}
! CorrectH CatchTheory T eCatch

eCatchCorrect {�0 = �
0} e0 {| ⇣ |} (tt , refl) {� = x , m} =

begin
EJ 8catch (pure x) m K
⇡hh from-⌘ (sym $ ⇣ .preserves-cases _ EJ_K) ii

(] (given hThrow handle (pure x) $ tt))
�= maybe0 pure (EJ m K)

⇡hhii {- By definition of hThrow -}

(pure (just x)�= maybe0 pure ((EJ m K�= pure)))
⇡hhii {- By definition of �= -}

EJ pure x K
⌅

where
open ⇡-Reasoning _
open Elab e0

In the Agda formalization accompanying this paper [Van der
Rest and Bach Poulsen, 2024], we verify correctness of elabora-
tions for the higher-order operations that are part of the 3MT
library by Delaware et al. [2013c]. Figure 12 shows an overview of
first-order and higher-order effects included in the development,
and the laws which we prove about their handlers respectively
elaborations.

[February 18, 2025 at 13:46 – version 4.2]

134 hefty algebras

Effect Laws

Throw 8throw�= k ⌘ k bind-throw

State

8get�= � s! 8get�= k s ⌘ 8get�= k s s get-get
8get�= 8put ⌘ pure x get-put

8put s� 8get ⌘ 8put s� pure s put-get

‘put s� 8put s0 ⌘ 8put s0 put-put

Reader

8ask� m ⌘ m ask-query
8ask�= � r! 8ask�= k r ⌘ 8ask�= � r! k r r ask-ask

m�= � x! 8ask�= � r! k x r ⌘ 8ask�= � r! m�= � x! k x r ask-bind

LocalReader

8local f (pure x) ⌘ pure x local-pure
8local f (m�= k) ⌘ 8local f m�= 8local f � k local-bind

8local f 8ask ⌘ pure � f local-ask
8local (f � g) m ⌘ 8local g (8local f m) local-local

Catch

8catch (pure x) m ⌘ pure x catch-pure
8catch 8throw m ⌘ m catch-throw1

‘catch m 8throw ⌘ m catch-throw2

Lambda
8abs f�= � f0 ! 8app f0 m ⌘ m�= f beta

pure f ⌘ 8abs (� x! 8app f (8var x)) eta

Figure 12: Overview
of effects, their op-
erations, and verified
laws in the Agda code

3.6 related work

As stated in the introduction of this paper, defining abstractions
for programming constructs with side effects is a research ques-
tion with a long and rich history, which we briefly summarize
here. Moggi [1990] introduced monads as a means of model-
ing side effects and structuring programs with side effects; an
idea which Wadler [1992] helped popularize. A problem with
monads is that they do not naturally compose. A range of dif-
ferent solutions have been developed to address this issue [Jr.,
1994, Jones and Duponcheel, 1993, Filinski, 1999, Cenciarelli and
Moggi, 1993]. Of these solutions, monad transformers [Cencia-
relli and Moggi, 1993, Liang et al., 1995b, Jaskelioff, 2008] is
the more widely adopted solution. However, more recently, al-
gebraic effects [Plotkin and Power, 2002] was proposed as an

[February 18, 2025 at 13:46 – version 4.2]

3.6 related work 135

alternative solution which offers some modularity benefits over
monads and monad transformers. In particular, whereas mon-
ads and monad transformers may “leak” information about the
implementation of operations, algebraic effects enforce a strict
separation between the interface and implementation of opera-
tions. Furthermore, monad transformers commonly require glue
code to “lift” operations between layers of monad transformer
stacks. While the latter problem is addressed by the Monatron
framework of Jaskelioff [2008], algebraic effects have a simple
composition semantics that does not require intricate liftings.

However, some effects, such as exception catching, did not fit
into the framework of algebraic effects. Effect handlers [Plotkin
and Pretnar, 2009b] were introduced to address this problem.
Algebraic effects and handlers has since been gaining traction
as a framework for modeling and structuring programs with
side effects in a modular way. Several libraries have been de-
veloped based on the idea such as Handlers in Action [Kammar
et al., 2013], the freer monad [Kiselyov and Ishii, 2015], or Idris’
Effects DSL [Brady, 2013a]; but also standalone languages such
as Eff [Bauer and Pretnar, 2015], Koka [Leijen, 2017], Frank [Con-
vent et al., 2020], and Effekt [Brachthäuser et al., 2020].54 54 A more extensive list

of applications and
frameworks can be
found in Jeremy Yallop’s
Effects Bibliography:
https://github.com/

yallop/

effects-bibliography

As discussed in Section 3.1.2 and Section 3.2.5, some modular-
ity benefits of algebraic effects and handlers do not carry over to
higher-order effects. Scoped effects and handlers [Wu et al., 2014,
Piróg et al., 2018, Yang et al., 2022] address this shortcoming
for scoped operations, as we summarized in Section 3.2.6. This
paper provides a different solution to the modularity problem
with higher-order effects. Our solution is to provide modular
elaborations of higher-order effects into more primitive effects
and handlers. We can, in theory, encode any effect in terms of
algebraic effects and handlers. However, for some effects, the
encodings may be complicated. While the complicated encodings
are hidden behind a higher-order effect interface, complicated
encodings may hinder understanding the operational semantics
of higher-order effects, and may make it hard to verify algebraic
laws about implementations of the interface. Our framework
would also support elaborating higher-order effects into scoped

[February 18, 2025 at 13:46 – version 4.2]

https://github.com/yallop/effects-bibliography
https://github.com/yallop/effects-bibliography
https://github.com/yallop/effects-bibliography

136 hefty algebras

effects and handlers, which might provide benefits for verifica-
tion. We leave this as a question to explore in future work.

Although not explicitly advertised, some standalone languages,
such as Frank [Convent et al., 2020] and Koka [Leijen, 2017] do
have some support for higher-order effects. The denotational
semantics of these features of these languages is unclear. A ques-
tion for future work is whether the modular elaborations we
introduce could provide a denotational model.

A recent paper by Van den Berg et al. [2021a] introduced a
generalization of scoped effects that they call latent effects which
supports a broader class of effects, including � abstraction. While
the framework appears powerful, it currently lacks a denota-
tional model, and seems to require similar weaving glue code as
scoped effects. The solution we present in this paper does not
require weaving glue code, and is given by a modular but simple
mapping onto algebraic effects and handlers.

Looking beyond purely functional models of semantics and
effects, there are also lines of work on modular support for side
effects in operational semantics [Plotkin, 2004]. Mosses’ Modular
Structural Operational Semantics [Mosses, 2004] (MSOS) defines
small-step rules that implicitly propagate an open-ended set of
auxiliary entities which encode common classes of effects, such
as reading or emitting data, stateful mutation, and even control
effects [Sculthorpe et al., 2015]. The K Framework [Rosu and
Serbanuta, 2010] takes a different approach but provides many
of the same benefits. These frameworks do not encapsulate op-
erational details but instead make it notationally convenient to
program (or specify semantics) with side effects.

3.7 conclusion

We have presented a new solution to the modularity problem
with modeling and programming with higher-order effects. Our
solution allows programming against an interface of higher-order
effects in a way that provides effect encapsulation, meaning we
can modularly change the implementation of effects without
changing programs written against the interface and without

[February 18, 2025 at 13:46 – version 4.2]

3.7 conclusion 137

changing the definition of any interface implementations. Fur-
thermore, the solution requires a minimal amount of glue code
to compose language definitions.

We have shown that the framework supports modular reason-
ing on a par with algebraic effects and handlers, albeit with some
administrative overhead. While we have made use of Agda and
dependent types throughout this paper, the framework should
be portable to less dependently-typed functional languages, such
as Haskell, OCaml, or Scala. An interesting direction for future
work is to explore whether the framework could provide a de-
notational model for handling higher-order effects in standalone
languages with support for effect handlers.

postscript

While this chapter describes an approach for modularly defining
higher-order effects that is expressive enough for describing the
side effects of most of the interpreters discussed in Section 2.5,
the language fragment implementing polymorphic references
remains beyond its capabilities. The reason is that it requires
world-indexing to maintain well-formedness of references. While
extending the approach to include support for that and other
intrinsically-typed effects is an interesting subject for futre work,
in the remainder of this thesis we will address a different problem.
That is, by working in Agda we induce significant syntactic
overhead into our definitions resulting from modularity. One
way to deal with this overhead is to design a dedicated meta-
language that includes modularity of definitions as part of its
design. The second part of this thesis explores this approach.

[February 18, 2025 at 13:46 – version 4.2]

[February 18, 2025 at 13:46 – version 4.2]

Part II

M E TA L A N G UA G E D E S I G N

[February 18, 2025 at 13:46 – version 4.2]

[February 18, 2025 at 13:46 – version 4.2]

4
T O WA R D S A L A N G UA G E F O R D E F I N I N G
R E U S A B L E P R O G R A M M I N G L A N G UA G E
C O M P O N E N T S

preface

We begin our exploration of meta-language design for defining
reusable programming language components with the language
CS, wich aims to provide a convenient surface syntax for work-
ing with extensible data types. The goal of designing this lan-
guage is to gain insight into the programming abstractions that a
meta-language could feature for defining reusable programming
language components. While the language lacks a formal defini-
tion of its type system and semantics, it does have a prototype
implementation.

4.1 introduction

Developing programming languages is a difficult and time con-
suming task, which requires a lot of expertise from the language
designer. One way to reduce the cost of language development
is to build languages from reusable programming components, al-
lowing language designers to grab off-the-shelf components for
common language features. This approach has the potential to
make language development both cheaper and more accesbile,
while producing specifications that allow us to understand the
semantics of language features independent from the language
they are a part of. Modern functional programming languages,
however, lack support for reuse of definitions, and as a result,

141

[February 18, 2025 at 13:46 – version 4.2]

142 a language for defining reusable components

language components built from algebraic data types and pat-
tern matching functions cannot be reused without modifying or
copying existing code. To illustrate the kind of language com-
ponents we would like to define modularly, and where current
functional programming languages fall short for this purpose,
we consider the implementation of a tiny expression language
and its interpreter in Haskell:

[February 18, 2025 at 13:46 – version 4.2]

4.1 introduction 143

data Expr = Lit Int | Div Expr Expr

eval :: MonadFail m) Expr! m Int
eval (Lit x) = return x
eval (Div e1 e2) = do

v1 eval e1
v2 eval e2
if v2 6⌘ 0 then return (v1 ‘div‘ v2 else fail

The Expr data type declares an abstract syntax type with construc-
tors for literals and division, and the function eval implements
an interpreter for Expr. Importantly, eval needs to account for
possible divisions by zero: evaluating Div (Lit 10) (Lit 0), for ex-
ample, should safely evaluate to a result that indicates a failure,
without crashing. For this reason eval does not produce an Int
directly, but rather wraps its result in an abstract monad m that
encapsulates the side effects of interpretation. In this case, we
only assume that m is a member of the MonadFail typeclass. The
MonadFail class hase one function, fail:

class MonadFail m where
fail :: m a

We refer to functions, such as fail, that allow us to interact with
an abstract monad as operations. We choose to factor language
definitions this way, because it allows us to both define a com-
pletely new interpretation such as pretty printing or compila-
tion for Expr by writing new functions pretty :: Expr ! String
or compile :: Expr ! m [Instr], while also having the option to
change the implementation of existing semantics, by supplying
alternative implementations for the fail operation. We can sum-
marize this approach to defining language components with the
following pipeline:

Syntax denotation������! Operations
implementation���������! Result

That is, a denotation maps syntax to an appropriate domain. In
the definition of this domain, we distinguish between the type of
the resulting value, and the side effects of computing this result,
which are encapsulated in an abstract monad. We interact with

[February 18, 2025 at 13:46 – version 4.2]

144 a language for defining reusable components

this abstract monad using operations, and thus to extract a result
we must supply a monad that implements all required operations.

What if we want to extend this language? To add new construc-
tors to the abstract syntax tree, we must extend the definition of
Expr, and modify all functions that match on Expr accordingly.
Furthermore, the new clauses for these constructors may impose
additional requirements on m for which we would need to add
more typeclass constraints, and any existing instantiations of m
would need to be updated to ensure that they are still a member
of all required typeclasses.

Clearly, for these reasons Expr and eval in their current form
do not work very well as a reusable language component. We
introduce CS, a functional meta-language for defining reusable
programming language components. The goal of CS is to provide
a language in which one can define language components by
defining data types and pattern matching functions, like Expr and
eval, in such a way that we compose the syntax, interpretations,
and effects of a language component without affecting existing
defintion. Importantly, we should also retain the possibility to
add completely new interpretations for existing syntax by writing
a new pattern matching function. In other words, CS should solve
the expression problem [Wadler, 1998].

We can summarize this with following concrete design goals.
In CS, one should be able to

• extend existing abstract syntax types with new constructors
without having to modify existing definitions,

• extend existing denotations with clauses for new construc-
tors, and define new semantics for existing syntax by defin-
ing new denotations,

• define abstract effect operations, and use these operations
to implement denotation clauses without having to worry
about the operations needed by other clauses, and

• define implementations for effect operations that are inde-
pendent from the implementations of other operations.

[February 18, 2025 at 13:46 – version 4.2]

4.2 cs by example 145

There exist abstractions, such as Data Types à la Carte [Swierstra,
2008] and Algebraic Effects and Handlers [Plotkin and Pretnar,
2009a], that achieve the same goals. These provide the well-
understood formalism on wich CS is built. CS then provides a
convenient surface syntax for working with these abstractions
that avoids the overhead that occurs when encoding them in a
host language like Haskell.

CS is work in progress. There is a prototype implementation of
an interpreter and interactive programming environment which
we can use to define and run the examples from this abstract. We
are, however, still in the process of developing and implementing
a type system. In particular, we should statically detect errors
resulting from missing implementations of function clauses.

The name CS is an abbreviation of “CompositionalSemantics”.
It is also the initials of Christopher Strachey, whose pioneering
work [Strachey, 1966] initiated the development of denotational
semantics. In Fundamental Concepts in Programming Languages,
Strachey [2000] wrote that “the urgent task in programming
languages is to explore the field of semantic possibilities”, and
that we need to “recognize and isolate the central concepts” of
programming languages. Today, five decades later, the words
still ring true. The CS language aims to address this urgent
task in programming languages, by supporting the definition of
reusable (central) programming language concepts, via composi-
tional denotation functions that map the syntax of programming
languages to their meaning.

4.2 cs by example

In this section, we give an example-driven introduction to CS’s
features.

4.2.1 Data Types and Functions

CS is a functional programming language, and comes equipped
with algebraic data types and pattern matching functions. We
declare a new inductive data type for natural numbers as follows:

[February 18, 2025 at 13:46 – version 4.2]

146 a language for defining reusable components

data Nat = Zero | Suc Nat

We can write functions over inductive data types by pattern
matching, using a “pipe” (|) symbol to separate clauses:

fun double : Nat! Nat where
| Zero 7! Zero
| (Suc n) 7! Suc (Suc (double n))

Not all types are user-declared: CS also offers built-in types and
syntax for integers, lists, tuples, and strings.

fun length : List a! Int where
| [] 7! 0

| (:: xs) 7! 1+ length xs

fun zip : List a! List b! List (a ⇤ b) where
| [] 7! []

| (x :: xs) (y :: ys) 7! (x, y) :: zip xs ys

Both length and zip are polymorphic in the type of elements
stored in the input list(s). Functions implicitly generalize over
any free variables in their type signature.

4.2.2 Effects and Handlers

CS supports effectful programs by means of effects and handlers
in the spirit of Plotkin and Pretnar [2009a], adapted to support
higher-order operations. The key idea of the effects-and-handlers
approach is to declare the syntax of effectful operations, and assign
a semantics to these operations in a separate handler. Programs
compute values and have side effects, and operations act as the
interface through which these side effects are triggered.

We declare a new effect Fail with a single operation fail in CS
as follows:

effect Fail where
fail : {[Fail] a}

Effects in CS are declared with the effect keyword, and we de-
clare its operations by giving a list of GADT-style signatures. In

[February 18, 2025 at 13:46 – version 4.2]

4.2 cs by example 147

this case, the fail operation is declared to have type {[Fail] a}.
We enclose the type of fail in braces ({-}) to indicate that the
name fail refers to a suspended computation (Section 4.2.3). Sus-
pended computations are annotated with an effect row, enclosed
in square brackets ([-]), denoting the side effects of running the
computation. Invoking the fail operation has Fail as a side effect.

We can use the Fail effect to implement a safe division function
that invokes fail if the divisor is zero.

fun safeDiv : Int! Int! [Fail] Int where
| x 0 7! fail!
| x y 7! ...

The postfix exclamation mark to fail is necessary to force the sus-
pended computation. Here, we want to refer to the “action” of
failing, rather than the computation itself, following Frank’s [Con-
vent et al., 2020] separation between “being and doing”. We
elaborate on this distinction in Section 4.2.3.

A function’s type signature must explicitly indicate its side
effects. In this case, we annotate the return type of safeDiv with
the Fail effect to indicate that its implementation uses operations
of this effect. Removing the annotation would make the above
invocation of fail ill-typed. For functions that have no side effects,
we may omit its row annotation: a! b is synonymous to a! [] b

Handlers discharge an effect from annotations by assigning a
semantics to its operations. For the Fail effect, we can do this by
encoding exceptions in the Maybe type.

data Maybe a = Just a | Nothing

handler hFail : {[Fail|e] a}! {[e] (Maybe a)} where
| fail k 7! {Nothing}
| return x 7! {Just x}

The handler hFail takes a value annotated with the Fail effect, and
produces a Maybe value annotated with the remaining effects e.
All free effect row variables in a signature, like e, are implicitly
generalized over. When defining a handler we must provide a
clause for each operation of the handled effect. Additionally, we
must write a return clause that lifts pure values into the domain

[February 18, 2025 at 13:46 – version 4.2]

148 a language for defining reusable components

that encodes the effect’s semantics. Operation clauses have a
continuation parameter, k, with type b ! [e] (Maybe a), which
captures the remainder of the program starting from the current
operation. Handlers may use the continuation parameter to de-
cide how execution should resume after the current operation
is handled. For example, when handing the fail operation we
terminate execution of the program by ignoring this continuation.

We use the continuation parameter in a different way when
defining a handler for a State effect, where s : Set is a parameter
of the module in which we define the effect.

effect State where
| get : [State] s
| put : s! [State] ()

handler hState : {[State|e] a}! s! {[e] (a ⇤ s)} where
| get st k 7! k st st
| (put st 0) st k 7! k () st 0

| return x st 7! {(x, st)}

For both the get and put operations, we use the continuation
parameter k to implement the corresponding branch in hState.
The continuation expects a value whose type corresponds to the
return type of the current operation, and produces a computation
with the same type as the return type of the handler. For the
put operation, for example, this means that k is of type () !
s ! {[e] (a ⇤ s)}. The implementation of hState for get and put

then simply invokes k, using the current state as both the value
and input state (get), or giving a unit value and using the given
state st 0 as the input state (put). Effectively, this means that
after handling get or put, execution of the program resumes,
respectively with the same state or an updated state st 0.

Handlers in CS are so-called deep handlers, meaning that they
are automatically distributed over continuations. For the example
above, this means that that the State effect is already handled in
the computation returned by k. The alternative is shallow handlers,
in which case k would return a computation of type {[State|e] a}.
When using shallow handlers, the programmer is responsible for
recursively applying the handler to the result of continuations.

[February 18, 2025 at 13:46 – version 4.2]

4.2 cs by example 149

While shallow handlers are more expressive, unlike deep han-
dlers they are not guaranteed to correspond to a fold over the
effect tree, meaning that they are potentially harder to reason
about.

4.2.3 Order of Evaluation, Suspension, and Enactment

Inspired by Frank [Convent et al., 2020], CS allows effectful
computations to be used as if they were pure values, without
having to sequence them. Sub-expressions in CS are evaluated
from left to right, and the side effects of computational sub-
expressions are evaluated eagerly in that order. For example,
consider the following program:

fun f : Int! [Fail] Int where
| n 7! fail! + n

Here, we use the expression fail! (whose type is instantiated to
[Fail] Int) as the first argument to +, where a value of type Int is
expected. This is fine, because side effects that occur during eval-
uation of sub-terms are discharged to the surrounding context.
That is, the side effects of evaluating computational sub-terms in
the definition of f become side effects of f itself.

In practice, this means that function application in CS is not
unlike programming in an applicative style in Haskell. For instance,
when using the previously-defined handler hFail, which maps
the Fail effect to a Maybe, we can informally understand the
semantics of the CS program above as equivalent to the following
Haskell program:

f :: Int!Maybe Int
f n = (+) <$> Nothing <⇤> pure n

Equivalently, we could write the following monadic program in
Haskell, which makes the evaluation order explicit.

f :: Int!Maybe Int
f n = do x Nothing

y pure n
return (x + y)

[February 18, 2025 at 13:46 – version 4.2]

150 a language for defining reusable components

CS’s eager treatment of side effects means that effectful compu-
tations are not first-class values, in the sense that we cannot refer
to an effectful computation without triggering its side effects. To
treat computations as first-class, we must explicitly suspend their
effects using braces:

fun f 0 : Int! {[Fail] Int} where
| n 7! {f n}

The function f 0 is no longer a function on Int that may fail, but
instead a function from Int to a computation that returns and Int,
but that could also fail. We indicate a suspended computation in
types using braces ({/}), and construct a suspension at the term
level using the same notation.

To enact the side effects of a suspended computation, we postfix
it with an exclamation mark (!). For example, the expression
(f 0 0)! has type [Fail] Int, whereas the expression (f 0 0) has type
{[Fail] Int}. We see the same distinction with operations declared
using the effect keyword. When we write fail, we refer to the
operation in a descriptive sense, and we can treat it like any
other value without having to worry about its side effects. When
writing fail! , on the other hand, we are really performing the
action of abruptly terminating: fail is and fail! does.

4.2.4 Modules and Imports

CS programs are organized using modules. Modules are delim-
ited using the module and end keywords, and their definitions
can be brought into scope elsewhere using the import keyword.
All declarations—i.e., data types, functions, effects, and handlers—
must occur inside a module.

module A where
fun f : Int! Int where
| n 7! n + n

end

module B where
import A

[February 18, 2025 at 13:46 – version 4.2]

4.2 cs by example 151

fun g : Int! Int where
| n 7! f n

end

In addition to being an organizational tool, modules play a key
role in defining and composing modular data types and func-
tions.

4.2.5 Composable Data Types and Functions

In addition to plain algebraic data types and pattern matching
functions, declared using the data and fun keywords, CS also
supports case-by-case definitions of extensible data types and
functions. In effect, CS provides a convenient surface syntax for
working with DTC-style [Swierstra, 2008] definitions, which re-
lies on an embedding of the initial algebra semantics [Goguen,
1976, Johann and Ghani, 2007] of data types to give a semantics
to extensible and composable algebraic data types and func-
tions, meaning that extensible functions have to correspond to a
fold [Meijer et al., 1991]. In CS, one can program with extensible
data types and functions in the same familiar way as with their
plain, non-extensible counterparts.

The module system plays an essential role in the definition
of composable data types and functions. That is, modules can
inhabit a signature that declares the extensible types and functions
for which that module can give a partial definition. In a signature
declaration, we use the keyword sort to declare an extensible
data type, and the alg keyword to declare an extensible function,
or algebra. By requiring extensible functions to be defined as
algebras over the functor semantics of extensible data types, we
enforce by construction that they correspond to a fold.

As an example, consider the following signature that declares
an extensible data type Expr, which can be evaluated to an integer
using eval.

signature Eval where
sort Expr : Set

[February 18, 2025 at 13:46 – version 4.2]

152 a language for defining reusable components

alg eval : Expr! Int
end

To give cases for Expr and eval, we define modules that inhabit
the Eval signature.

module Lit : Eval where
cons Lit : Int! Expr
case eval (Lit x) 7! x

end

module Add : Eval where
cons Add : Expr! Expr! Expr
case eval (Add x y) 7! x + y

end

The cons keyword declares a new constructor for an extensi-
ble data type, where we declare any arguments by giving a
GADT-style type signature. We declare clauses for functions that
match on an extensible type using the case keyword. For every
newly declared constructor of an extensible data type, we have
an obligation to supply exactly one corresponding clause for ev-
ery extensible function that matches on that type. CS has a coverage
checker that checks whether modules indeed contain all neces-
sary definitions, in order to rule out partiality resulting from
missing patterns. For example, omitting the eval case from either
the module Lit or Add above will result in a static error. Coverage
is checked locally in modules, and preserved when composing
signature instances.

In the definition of eval in the module Add, we see the im-
plications of defining function clauses as algebras. We do not
have direct control over recursive calls to eval. Instead, in case
declarations, any recursive arguments to the matched constructor
are replaced with the result of recursively invoking eval on them.
In this case, this implies that x and y do not refer to expressions.
Rather, if we invoke eval on the expression Add e1 e2, in the
corresponding case declaration, x and y are bound to eval e1
and eval e2 respectively. We could encode the same example in
Haskell as follows, but to use eval on concrete expressions ad-
ditionally requires explicit definitions of a type level fixpoint

[February 18, 2025 at 13:46 – version 4.2]

4.2 cs by example 153

and fold operation. In CS, this encoding layer is hidden by the
language.

data Add e = Add e e
eval :: Add Int! Int
eval (Add x y) = x + y

To compose signature instances we merely have to import them
from the same location.

module Program where
import Lit, Add

-- Evaluates to 3
fun test : Int = eval (Add (Lit 1) (Lit 2))

end

By importing both the Lit and Add modules, the names Expr
and eval will refer to the composition of the constructors/clauses
defined in the imported signature instances. Here, this means
that we can construct and evaluate expressions that consist of
both literals and addition. Furthermore, to add a new constructor
into the mix, we can simply define a new module that instantiates
the Eval signature, and add it to the import list.

To define an alternative interpretation for Expr, we declare a
new signature. In order to reference the sort declaration for Expr,
we must import the Eval signature.

signature Pretty where
import Eval - - brings ’Expr’ into scope

alg pretty : Expr! String
end

We declare cases for pretty by instantiating the newly defined
signature, adding import declarations to bring relevant cons
declaration into scope.

module PrettyAdd : Pretty where
import Add -- brings ’Add’ into scope

case pretty (Add s1 s2) = s1++ “ + " ++ s2
end

[February 18, 2025 at 13:46 – version 4.2]

154 a language for defining reusable components

It is possible for two modules to be conflicting, in the sense that
they both define an algebra case for the same constructor. This
would happen, for example, if we were to define another module
PrettyAdd2 that also implements pretty for the constructor Add.
Importing two conflicting modules should result in a type error,
since the semantics of their composition is unclear.

4.3 defining reusable language components in cs

In this section, we demonstrate how to use the features of CS
introduced in the previous section to define reusable language
components. We work towards defining a reusable component
for function abstraction, which can be composed with other
constructs, and for which we can define alternative implemen-
tations. As an example, we will show that we can use the same
component defining functions with both a call-by-value and call-
by-name strategy.

4.3.1 A Signature for Reusable Components

The first step is to define an appropriate module signature. We
follow the same setup as for the Eval signature in Section 4.2.5.
That is, we declare an extensible sort Expr, together with an
algebra eval that consumes values of type Expr. The result of
evaluation is a Value, with potential side effects e. The side effects
are still abstract in the signature definition. The effect variable e
is universally quantified, but instantiations of the signature Eval
can impose additional constraints depending on which effects
they need to implement eval. As a result, when invoking eval,
e can be instantiated with any effect row that satisfies all the
constraints imposed by the instances of Eval that are in scope.

signature Eval where
sort Expr : Set
alg eval : Expr! {[e] Value}

end

[February 18, 2025 at 13:46 – version 4.2]

4.3 defining reusable language components in cs 155

We will consider the precise definition of Value later in Sec-
tion 4.3.3. For now, it is enough to know that it has a constructor
Num : Int! Value that constructs a value from an integer literal.

4.3.2 A Language Component for Arithmetic Expressions

Let us start by defining instances of the Eval signature for the
expression language from the introduction. First, we define a
module for integer literals.

module Lit : Eval where
cons Lit : Int! Expr
case eval (Lit n) = {Num n}

end

The corresponding clause for eval simply returns the value n
stored inside the constructor. Because the interpreter expects that
we return a suspended computation, we must wrap n in a sus-
pension, even though it is a pure value. Enacting this suspension,
however, does not trigger any side effects, and as such importing
Lit imposes no constraints on the effect row e.

Next, we define a module Div that implements integer division.

module Div : Eval where
cons Div : Expr! Expr! Expr
case eval (Div m1 m2) = {safeDiv m1! m2! }

Looking at the implementation of eval in the module Div we
notice two things. First, the recursive arguments to Div have
been replaced by the result of calling eval on them, meaning
that m1 and m2 are now computations with type {[e] Int}, and
hence we must use enactment before we can pass the result to
safeDiv. Enacting these computations may trigger side effects, so
the order in which sub-expressions are evaluated determines in
which order these side effects occur in the case that expressions
contain more than one enactment. Sub-expressions in CS are
evaluated from left to right. Second, the implementation uses the
function safeDiv, defined in Section 4.2.2, which guards against
errors resulting from division by zero.

[February 18, 2025 at 13:46 – version 4.2]

156 a language for defining reusable components

The function safeDiv is annotated with the Fail effect, which
supplies the fail operation. By invoking safeDiv in the defintion of
eval, which from the definition of Eval has type Expr! {[e] Int},
we are imposing a constraint on the effect row e that it contains
at least the Fail effect. In other words, whenever we import the
module Div we have to make sure that we instantiate e with a
row that has Fail in it. Consequently, before we can extract a
value from any instantiation of Eval that includes Div, we must
apply a handler for the Fail effect.

Since the interpreter now returns a Value instead of an Int,
we must modify safeDiv accordingly. In practice this means that
we must check if its arguments are constructed using the Num
constructor before further processing the input. Since safeDiv
already has Fail as a side effect, we can invoke the fail operation
in case an argument was constructed using a different constructor
than Num.

4.3.3 Implementing Functions as a Reusable Effect

CS’s effect system can describe much more sophisticated effects
than Fail. The effect system permits fine-grained control over the
semantics of operations that affect a program’s control flow, even
in the presence of other effects. To illustrate its expressiveness,
we will now consider how to define function abstraction as a
reusable effect, and implement two different handlers for this ef-
fect corresponding to a call-by-value and call-by-name semantics.
Implementing function abstraction as an effect is especially chal-
lenging since execution of the function body is deferred until the
function is applied. From a handler’s perspective, this means that
the function body and its side effect have to be postponed until a
point beyond its own control, a pattern that is very difficult to
capture using traditional algebraic effects.

We will see shortly how CS addresses this challenge. A key part
of the solution is the ability to define higher-order operations: oper-
ations with arguments that are themselves effectful computations,
leaving it up to the operation’s handler to enact the side effects

[February 18, 2025 at 13:46 – version 4.2]

4.3 defining reusable language components in cs 157

of higher-order arguments. The Fun effect, which implements
function abstraction, has several higher-order operations.

effect Fun where
| lam : String! {[Fun] Value}! {[Fun] Value}
| app : Value ! Value ! {[Fun] Value}
| var : String ! {[Fun] Value}
| thunk : {[Fun] Value} ! {[Fun] Value}

The Fun effect defines four operations, three of which correspond
to the usual constructs of the �-calculus. The thunk operation
has no counterpart in the �-calculus, and postpones evaluation
of a computation. It is necessary for evaluation to support both a
call-by-value and call-by-name evaluation strategy

When looking at the lam and thunk operations, we find that
they both have parameters annotated with the Fun effect. This
annotation indicates that they are higher-order parameters. By
allowing higher-order parameters to operations, effects in CS do
not correspond directly to algebraic effects. Instead, to give as
semantics to effects in CS, we must use a flavor of effects that
permits higher-order syntax, such as Latent Effects [Van den Berg
et al., 2021a].

As a result, any effects of the computations stored in a closure
or thunk are postponed, leaving it up to the handler to decide
when these take place.

using the Fun effect To build a language with function
abstractions that uses the Fun effect, we give an instance of the
Eval signature that defines the constructors Abs, App, and Var for
Expr. We extend eval for these constructors by mapping onto the
corresponding operation.

module Lambda : Eval where
cons Abs : String! Expr! Expr
| App : Expr ! Expr! Expr
| Var : String ! Expr

case eval (Abs x m) = lam x m
| eval (App m1 m2) = app m1! (thunk m2)!

[February 18, 2025 at 13:46 – version 4.2]

158 a language for defining reusable components

| eval (Var x) = var x
end

Crucially, in the case for Abs we pass the effect-annotated body
m, with type {[e] Value}, to the lam operation directly without
extracting a pure value first. This prevents any effects in the body
of a lambda from being enacted at the definition site, and instead
leaves the decision of when these effects should take place to the
used handler for the Fun effect. Similarly, in the case for App, we
pass the function argument m2 to the thunk operation directly,
postponing any side effects until we force the constructed thunk.
The precise moment at which we will force the thunk constructed
for function arguments will depend on whether we employ a
call-by-value or call-by-name strategy. We must, however, enact
the side effects of evaluating the function itself (i.e., m1), because
the app operation expects its arguments to be a pure value.

We implement call-by-value and call-by-name handlers for Fun
in a new module, which also defines the type of values, Value,
for our language. To keep the exposition simple, Value is not an
extensible sort, but it is possible to do so in CS.

Values in this language are either numbers (Num), function
closures (Clo), or thunked computations (Thunk). We define the
type of values together in the same module as the handler(s) for
the Fun effect. This module is parameterized over an effect row e,
that denotes the remaining effects that are left after handling the
Fun effect. In this case, e is a module parameter to express that
the remaining effects in the handlers that we will define coincide
with the effect annotations of the computations stored in the Clo
and Thunk constructors, allowing us to run these computations
in the handler.

module HLambda (e : Effects) where

import Fun

type Env = List (String ⇤Value)
data Value = Num Int

| Clo String (Env! {[Fail|e] Value}) Env
| Thunk ({[Fail|e] Value})

[February 18, 2025 at 13:46 – version 4.2]

4.3 defining reusable language components in cs 159

handler hCBV : {[Fun|e] Value}
! Env! {[Fail|e] Value} where

| (lam x f) nv k 7! k (Clo x f nv) nv
| (app (Clo x f nv 0) (Thunk t)) nv k 7! k (f ((x, t!) :: nv 0))! nv
| (app) 7! {fail! }
| (var x) nv k 7! k (lookup nv x)! nv
| (thunk f) nv k 7! k (Thunk {f nv}) nv
| return v nv 7! {v}

Figure 13: A Handler
for the Fun effect, im-
plementing a call-by-
value semantics for
function arguments.
The gray highlights in-
dicate where thunks
constructed for func-
tion arguments are
forced.

- - ... (handlers for the Fun effect) ...
end

call-by-value We are now ready to define a handler for the
Fun effect that implements a call-by-value evaluation strategy.
Figure 13 shows its implementation.

The return case is unremarkable: we simply ignore the environ-
ment nv and return the value v. The cases for lam and thunk are
similar, as in both cases we do not enact the side effects associated
with the stored computation f , but instead wrap this computation
in a Closure or Thunk which is passed to the continuation k. For
variables, we resolve the identifier x in the environment and pass
the result to the continuation.

A call-by-value semantics arises from the implementation of
the app case. The highlights (e.g., t!) indicate where the thunk
we constructed for the function argument in eval is forced. In this
case, we force this argument thunk immediately when encoun-
tering a function application, meaning that any side effects of the
argument take place before we evaluate the function body.

call-by-name The handler in Figure 14 shows an implemen-
tation of a call-by-name semantics for the Fun effect. The only
case that differ from the call-by-value handler in Figure 13 are
the app and var cases.

[February 18, 2025 at 13:46 – version 4.2]

160 a language for defining reusable components

handler hCBN : {[Fun|e] Value}
! Env! {[Fail|e] Value} where

| (lam x f) nv k 7! k (Clo x f nv) nv
| (app (Clo x f nv 0) v) nv k 7! k (f ((x, v) :: nv 0))! nv
| (app) 7! {fail! }
| (var x) nv k 7! match (lookup x nv)! with

| (Thunk t) 7! k t! nv
| v 7! k v nv

end
| (thunk f) nv k 7! k (Thunk {f nv}) nv
| return v nv 7! {v}

Figure 14: A Handler
for the Fun effect, im-
plementing a call-by-
name semantics for
function arguments.
The gray highlights in-
dicate where thunks
constructed for func-
tion arguments are
forced.

In the case for app, we now put the argument thunk in the
environment immediately, without forcing it first. Instead, in
the case for var, we check if the variable we look up in the
environment is a Thunk. If so, we force it and pass the resulting
value to the continuation. In effect, this means that for a variable
that binds an effectful computation, the associated side effects
take place every time we use that variable, but not until we
reference it for the first time.

4.3.4 Example Usage

To illustrate how to use the reusable components defined in this
section, and the difference between the semantics implemented
by hCBV (Figure 13) and hCBN (Figure 14), we combine the
Lambda module with the modules for Div and Lit. Figure 15
shows the example.

When importing the modules HLambdaCBV and HLambdaCBN,
we pass an explicit effect row that corresponds to the effects that
remain after handling the Fun effect. Because we handle Fun after
handling the Fail effect introduced by Div, we pass the empty row.
To evaluate expressions, we have to invoke hFail twice: first to
handle the instance of the Fail effect introduced by eval for the Div

[February 18, 2025 at 13:46 – version 4.2]

4.3 defining reusable language components in cs 161

module Test where
import Prelude

, Fun
, Fail

, HLambdaCBV []

, HLambdaCBN []

, Lambda
, Lit
, Div

fun execCBV : Expr!Maybe (Maybe Value) where
| e 7! (hFail (hCBV (hFail (eval e)) []))!

fun execCBN : Expr!Maybe (Maybe Value) where
| e 7! (hFail (hCBN (hFail (eval e)) []))!

fun expr : Expr = App (Abs “x" (Lit 10)) (Div (Lit 5) (Lit 0))

- - evaluates to Just Nothing
fun result1 : Maybe (Maybe Value) = execCBV expr

- - evaluates to Just (Just (Num 10))
fun result2 : Maybe (Maybe Value) = execCBN expr

end

Figure 15: Examples
of different outcomes
when using a call-by-
value or call-by-name
evaluation strategy

constructor, and later to handle the Fail instance introduced by
applying hCBV/hCBN. Consequently, the result of evaluating is a
nested Maybe, where the inner instance indicates errors resulting
from division by zero, and the outer instance errors thrown by
the handler. Evaluating result1 and result2 shows the difference
between using the call-by-value and call-by-name semantics for
functions.

[February 18, 2025 at 13:46 – version 4.2]

162 a language for defining reusable components

4.4 related work

4.4.1 Effect Semantics

Monads, originally introduced by Moggi [1991] have long been
the dominant approach to modelling programs with side ef-
fects. They are, however, famously hard to compose, leading
to the development of monad transformers [Liang et al., 1995a]
as a technique for building monads from individual definitions
of effects. Algebraic effects [Plotkin and Power, 2003] provide a
more structured approach towards this goal, where an effect is
specified in terms of the operations that we can use to interact
with it. The behaviour of these operations is governed by a set
of equations that specify its well-behavedness. Later, Plotkin and
Pretnar [Plotkin and Pretnar, 2009a] extended the approach with
handlers, which define interpretations of effectful operations by
defining a homomorphism from a free model that trivially inhabits
the equational theory (i.e., syntax) to a programmer-defined do-
main, making the approach attractive for implementing effects as
well. Perhaps the most well-known implementation of algebraic
effects and handlers is the free monad [Kammar et al., 2013], and
this implementation is often taken as the semantic foundation
of languages with support for effect handlers. Schrijvers et al.
[2019] showed that algebraic effects implemented using the free
monad correspond to a sub-class of monad-transformers. The
algebraic effects and handlers approach provides a solid formal
framework for understanding effectful programs in which we
intend to ground CS’ semantics of effects and handlers.

A crucial difference between CS’ effects and handlers, and
the original formulation by Plotkin and Pretnar [2009a], is the
support for higher-order operations. Although it is possible to im-
plement such operations in algebraic effects by defining them as
handlers, this breaches the separation between the syntax and
semantics of effects that underpins CS’ design. Scoped Effects [Wu
et al., 2014] were proposed as an alternative flavor of algebraic
effects that supports higher-order syntax, recovering a separa-
tion between the syntax semantics of effects for higher-order

[February 18, 2025 at 13:46 – version 4.2]

4.4 related work 163

operations. In subsequent work, Piróg et al. [2018] adapted the
categorical formulation of algebraic effects to give Scoped Effects
a similar formal underpinning. Unfortunately, Scoped Effects is
not suitable out-of-the-box as a model for effects and handlers in
CS, because it cannot readily capture operations that arbitrarily
postpone the execution of their higher-order arguments, such as
lam. Latent effects were developed by Van den Berg et al. [2021a]
as a refinement of scoped effects that solves this issue. Key to
their approach is a latent effect functor, which explicitly tracks
semantic residue of previously-installed handlers, allowing for a
more fine-grained specification of the types of the computational
arguments of operations. With Latent Effects, it is possible to cap-
ture function abstraction as a higher-order operation. It remains
future work to formulate a precise model of effectful compu-
tation for CS, and to establish if and how CS’ effect handlers
correspond to Latent Effects.

4.4.2 Implementations of Algebraic Effects and Handlers

There are many languages with support for algebraic effects
and handlers. Perhaps the most mature is Koka [Leijen, 2017],
which features a Hindley/Milner-style row-polymorphic type
system. While we borrow from Frank [Convent et al., 2020] a
CBPV-inspired [Levy, 2004] distinction between computations
and values, Koka is purely call-by-value, and only functions can
be effectful. Frank [Convent et al., 2020], on the other hand, does
maintain this distinction between values and computations. Its
type system relies on an ambient ability and implicit row poly-
morphism to approximate effects. Handlers are not first-class
constructs in Frank. Instead, functions may adjust the ambient
ability of their arguments by specifying the behaviour of op-
erations. This provides some additional flexibility over built-in
handers, for example by permitting multihandlers that handle
multiple effects at once. Both Koka and Frank lack native sup-
port for higher order effects, thus higher-order operations must
be encoded in terms of handlers. This means that it is not pos-
sible to define higher order operations while maintaining the

[February 18, 2025 at 13:46 – version 4.2]

164 a language for defining reusable components

aforementioned distinction between the syntax and semantics of
effects.

Eff [Bauer and Pretnar, 2015] is a functional language with
support for algebraic effects and handlers, with the possibility to
dynamically generate new operations and effects. In later work,
Bauer and Pretnar [2014] developed a type-and-effect system for
Eff, together with an inference algorithm [Pretnar, 2014]. The
language Links [Lindley and Cheney, 2012] employs row-typed
algebraic effects in the context of database programming. Their
system is based on System F extended with effect rows and row
polymorphism, and limits effectful computations to functions
similar to Koka. Importantly, their system tracks effects using
Rémy-style rows [Rémy, 1989], maintaining so-called presence
types that can additionally express an effect’s absence from a
computation. Brachthäuser et al. [2020] presented Effekt as a
more practical implementation of effects and handlers, using
capability based type system where effect types express a set of
capabilities that a computation requires from its context.

4.4.3 Semantics of Composable Data Types and Functions

We give a semantics to extensible data types and functions in CS
using the initial algebra semantics [Goguen, 1976, Johann and
Ghani, 2007] of an underlying signature functor. Data Types à la
Carte (DTC) [Swierstra, 2008] solves the expression problem in
Haskell by embedding this semantics into the host language. In
later work, Bahr [2014] and Bahr and Hvitved [2011, 2012a] ex-
tended the approach to improve its expressiveness and flexibility.

DTC, like any approach that relies on initial algebra seman-
tics, limits the modular definition of functions to functions that
correspond to a fold over the input data. While this may seem
restrictive, in practice more complicated traversals can often be
encoded as a fold, such as paramorphisms [Meijer et al., 1991] or
some classes of attribute grammars [Johnsson, 1987]. While CS
currently only has syntax for plain algebras and folds, we plan
to extend the syntax for working with extensible data types and
functions to accomodate a wider range of traversals in the future.

[February 18, 2025 at 13:46 – version 4.2]

4.4 related work 165

Carette et al. [2009a] showed how to define interpreters by
encoding object language expressions as a term that represents
their traversal. These traversals correspond to a fold, but abstract
over the algebra that defines the computation, meaning that
alternative semantics can be assigned to terms by picking a
suitable algebra. Semantics are defined as type class instances in
the host language, thus one can build object language terms in
a modular way by defining multiple different type classes that
correspond to different syntactical constructs.

4.4.4 Row Types

While a concrete design for CS’ type system is still emerging,
we anticipate that it will make heavy use of row types, both for
tracking effects and typing extensible types and functions. While
to the best of our knowledge no type system exists with this com-
bination of features, all the ingredients are there in the literature.
Originally, row types were incepted as a means to model inher-
itance in object-oriented languages [Wand, 1989, Rémy, 1989],
and later extensible records [Blume et al., 2006, Gaster and Jones,
1996]. More recently, they also gained popularity in the form
of row-based effect systems with the development of languages
such as Koka [Leijen, 2017] and Links [Lindley and Cheney, 2012].
Their use for typing extensible algebraic data types and pattern
matching functions is less well-studied. For the most part, row
types in this context exist implicitly as part of encoding tech-
niques such as DTC [Swierstra, 2008], where we can view the
use of signature functors and functor co-products as an embed-
ding of row-typed extensible variants in the host language’s type
system. Various refinements of DTC [Morris, 2015, d. S. Oliveira
et al., 2015, Bahr, 2014] make this connection more explicit by
using type-level lists to track the composition of extensible data.
A notable exception is the Rose [Morris and McKinna, 2019a] lan-
guage, which has a row-based type system with built-in support
for extensible variants and pattern matching function.

[February 18, 2025 at 13:46 – version 4.2]

166 a language for defining reusable components

4.5 future work

CS is an ongoing research project. Here, we briefly summarize
the current state, and some of the challenges that still remain.

While we can implement the examples from this paper in
the current prototype implementation of CS, the language still
lacks a complete specification. As such, the immediate next steps
are to develop specifications of the type system and operational
semantics. This requires us to address several open research
questions, such as giving a semantics to the flavor of higher-order
effects used by CS, and applying row types to type CS’ extensible
data types and functions. While the Rose language supports
extensible variants, this support is limited to non-recursive types.
For CS, we would need to adapt their type sytem to support
recursive extensible data types as well. Designing a small core
calculus into which CS can be translated could be potential
way to explore these questions, making a formalization of the
language in a proof assistant more attainable, by formalizing the
core language. Further down the line, we also intend to explore a
denotational model for effect handlers in CS, giving the language
a more solid formal foundation, similar to existing programming
languages based on algebraic effects and handlers.

In the future, we also hope to enforce stronger properties
about specifications defined in CS through the language’s type
system. The prime example are intrinsically-typed definitional in-
terpreters [Augustsson and Carlsson, 1999], which specify a lan-
guage’s operational semantics such that it is type sound by con-
struction.

4.6 conclusion

Reusable programming language components have the potential
to significantly reduce the amount of time, effort, and expertise
needed for developing programming languages. In this paper, we
presented CS, a functional meta-language for defining reusable
programming language components. CS enables the defintion of
reusable language components using algebraic data types and

[February 18, 2025 at 13:46 – version 4.2]

4.6 conclusion 167

pattern matching functions, by supporting extensible data types
and functions, which are defined on a case-by-case basis. Addi-
tionally, CS features built-in support for effects and handlers for
defining the side effects of a language. The flavor of effects and
handlers implemented by CS supports higher-order operations,
and can be used to define features that affect a program’s control
flow, such as function abstraction, as a reusable effect. We illus-
trated how these features can be used for developing reusable
programming language components by defining a component
for function abstraction, which can be composed with other lan-
guage components and evaluated using both a call-by-value and
call-by-name strategy.

postscript

The language design we discussed in this section provides us for
a programming model for working with extensible data types.
What is clearly missing is a formal specification of a typing disci-
pline. Crucially, such a typing discipline should guarantee that all
extensions of existing data are safe, in the sense that the addition
of new constructors to a data type should not result in a scenario
where functions over an extensible data type can be applied to
inputs on which they are not defined. When embedding modular
data types in functional languages using the Data Types á la
Carte approach, type safe modularity is enforced by the host
languages type system using a de facto shallow embedding of
row-typed algebraic data types. This already provides us with some
hints for how a suitable type system could be designed. In the
next chapter, we design such a type system for a small calculus
featuring primitives for programming with modular data types.

[February 18, 2025 at 13:46 – version 4.2]

[February 18, 2025 at 13:46 – version 4.2]

5
T Y P E S A N D S E M A N T I C S F O R E X T E N S I B L E
D ATA T Y P E S

preface

In this chapter, we work towards providing a formal foundation
for the language design proposed in Chapter 5. We do this by
developing a core calculus that features primitives for working
with extensible data types, together with a type system and
(categorical) semantics. A potential way to connect the work from
this and the previous chapter would be to define a desugaring
from programs in CS to the calculus presented in this chapter,
although that is at this point still future work.

5.1 introduction

A common litmus test for a programming language’s capabil-
ity for modularity is whether a programmer is able to extend
existing data with new ways to construct it as well as to add
new functionality for this data. All in a way that preserves static
type safety; a conundrum which Wadler [1998] dubbed the ex-
pression problem. When working in pure functional programming
languages, another modularity question is how to model side
effects modularly using, e.g., monads [Moggi, 1991]. Ideally, we
would keep the specific monad used to model the effects of a
program abstract and program against an interface of effectful
operations instead, defining the syntax and implementation of
such interfaces separately and in a modular fashion.

169

[February 18, 2025 at 13:46 – version 4.2]

170 types and semantics for extensible data types

The traditional approach for tackling these modularity ques-
tions in pure functional programming languages is by embedding
the initial algebra semantics [Goguen, 1976] of inductive data types
in the language’s type system. By working with such embeddings
in favor of the language’s built-in data types we gain modularity
without sacrificing type safety. This approach was popularized by
Swierstra’s Data Types à la Carte [Swierstra, 2008] as a solution to
the expression problem, where it was used to derive modular in-
terpreters for a small expression language. In later work, similar
techniques were applied to define the syntax and implementation
of a large class of monads using (algebraic) effects and handlers
based on different flavors of inductively defined free monads. This
was shown to be an effective technique for modularizing both
first order [Kammar et al., 2013] and higher-order [Wu et al.,
2014, Bach Poulsen and Van der Rest, 2023, Van den Berg et al.,
2021a] effectful computations.

The key idea that unifies these techniques is the use of signature
functors, which act as a de facto syntactic representation of an
inductive data type or inductively defined free monad. Effectively,
this defines a generic inductive data type or free monad that takes
its constructors as a parameter. The crucial benefit of this setup
is that we can compose data types and effects by taking the
coproduct of signature functors, and we can compose function
cases defined over these signature functors in a similarly modular
way. Inductive data types and functions in mainstream functional
programming languages generally do not support these kinds of
composition.

While embedding signature functors has proven itself as a
tremendously useful technique for enhancing functional lan-
guages with a higher degree of type safe modularity, the ap-
proach has some downsides:

• Encodings of a data type’s initial algebra semantics lacks
the syntactic convenience of native data types, especially
when it comes to constructing and pattern matching on
values. Further overhead is introduced by their limited
interoperability, which is typically relies on user-defined
isomorphisms.

[February 18, 2025 at 13:46 – version 4.2]

5.1 introduction 171

• The connection between initial algebra semantics encodings
of data types, and the mathematical concepts that motivate
them remains implicit. This has two drawbacks: (1) the pro-
grammer has to write additional code witnessing that their
definitions possess the required structure (e.g., by defin-
ing instances of the Functor typeclass), and (2) a compiler
cannot leverage the properties of this structure, such as by
implementing (provably correct) optimizations based on
the well-known map and fold fusion laws.

In this paper, we explore an alternative perspective by making
type-safe modularity part of the language’s design, by including
built-in primitives for the functional programmer’s modularity
toolkit—e.g., functors, folds, fixpoints, etc. We believe that this
approach has the potential to present the programmer with more
convenient syntax for working with extensible data types (see,
for example, the language design proposed by Van der Rest
and Bach Poulsen [2022]). Furthermore, by supporting type-safe
modularity through dedicated language primitives, we open the
door for compilers to benefit from their properties, for example
by applying fusion based optimizations.

5.1.1 Contributions

The semantics of (nested) algebraic data types has been stud-
ied extensively in the literature (e.g., by Johann et al. [2021],
Johann and Polonsky [2019], Johann and Ghiorzi [2021], and
Abel and Matthes [2002], Abel et al. [2003, 2005]) resulting in
the development of various calculi with the purpose of studying
different aspects of the semantics of programming with algebraic
data types. In this paper, we build on these works to develop a
core calculus that seeks to distill the essential language features
needed for developing programming languages with built-in sup-
port for type-safe modularity while retaining the same formal
foundations. Although the semantic ideas that we build on to
develop our calculus are generally well-known, their application
to improving the design of functional programming languages
has yet to be explored in depth. It is still future work to leverage

[February 18, 2025 at 13:46 – version 4.2]

172 types and semantics for extensible data types

the insights gained by developing this calculus in the design of
programming language that provide better ergonomics for work-
ing with extensible data types, but we believe the development
of a core calculus capturing the essentials of programming with
extensible data types to be a key step for achieving this goal. To
bridge from the calculus presented in this paper to a practical
language design, features such as smart constructors, row types,
and (functor) subtyping (as employed, for example, by Morris
and McKinna [2019a] and Hubers and Morris [2023]) would be
essential. We make the following technical contributions:

• We show (in Section 5.2) how modular functions over alge-
braic data types in the style of Data Types à la Carte and
modular definitions of first-order and higher-order (alge-
braic) effects and handlers based on inductively defined
free monads can be captured in the calculus.

• We present (in Section 5.3) a formal definition of the syntax
and type system.

• We give (in Section 5.4) a categorical semantics for our
calculus.

• We present (in Section 5.5) an operational semantics for
our calculus, and discuss how it relates to the categorical
semantics.

Section 5.6 discusses related work, and Section 5.7 concludes.

5.2 programming with extensible data types , by ex-
ample

The basis of our calculus is the polymorphic �-calculus extended
with kinds and restricted to rank-1 polymorphism, allowing
the definition of many familiar polymorphic functions, such
as (id : 8↵.↵) ↵) = �x.x or (const : 8↵.8�.↵) �) ↵) =

�x.�y.x. Types are closed under products and coproducts, with
the unit type (1) and empty type () acting as their respective
units. Furthermore, we include a type-level fixpoint (µ), which

[February 18, 2025 at 13:46 – version 4.2]

5.2 programming with extensible data types 173

can be used to encode many well-known algebraic data types.
For example, the familiar type of lists is encoded as List ,
�↵.µ(�X.1 + (↵⇥ X)). A key feature of the calculus is that all
higher-order types (i.e., that have one or more type argument)
are, by construction, functorial in all their arguments. While this
imposes some restrictions on the types we can define, it also
means that the programmer gets access to primitive mapping
and folding operations that they would otherwise have to define
themselves. For the type List, for example, this means that we
get both the usual mapping operation transforming its elements,
as well as an operation corresponding to Haskell’s foldr, for free.

Although the mapping and folding primitives for first-order
type constructors (i.e., those taking arguments of kind ? and
producing a type of kind ?) are already enough to solve the
expression problem for regular algebraic data types (Section 5.2.2)
and to encode modular algebraic effects (Section 5.2.3), they
can readily be generalized to higher-order type constructors.
That is, type constructors that construct higher-order types from
higher-order types. The benefit of this generalization is that our
calculus can also capture the definition of so-called nested data
types [Bird and Meertens, 1998], which arise as the fixpoint of a
higher-order functor. We make essential use of the calculus’ higher-
order capabilities in Section 5.2.4 to define modular handlers for
scoped effects [Yang et al., 2022] and modular elaborations for
higher-order effects [Bach Poulsen and Van der Rest, 2023], as in
both cases effect trees that represents monadic programs with
higher-order operations is defined as a nested data type.

5.2.1 Notation

All code examples in this section directly correspond to programs
in our calculus, but we take some notational liberty to simplify
the exposition. Abstraction and application of type variables
is left implicit. Similarly, we omit first-order universal quan-
tifications. By convention, we denote type variables bound by
type-level �-abstraction using capital letters (e.g., X), and those
bound by universal quantification using Greek letters (e.g., ↵,�).

[February 18, 2025 at 13:46 – version 4.2]

174 types and semantics for extensible data types

5.2.2 Modular Interpreters in the style of Data Types à la Carte

We consider how to define a modular interpreter for a small
expression language of simple arithmetic operations. For starters,
we just include literals and addition. The corresponding BNF
equation and signature functor are given below:

e ::= N | e+ e Expr , �X.N + (X⇥X)

Now, we can define an eval that maps expressions—given by the
fixpoint of Expr—to their result:

expr : N + (N⇥N))N

expr = (�x.x) HHH (�x.⇡1 x+⇡2 x)

eval : µ(Expr))N

eval = L expr MExpr

Terms typeset in purple are built-in operations. ⇡1 and ⇡2 are
the usual projection functions for products, and - HHH - is an
eliminator for coproducts. Following Meijer et al. [1991], we
write L alg M⌧ (i.e., “banana brackets”) to denote a fold over the
type µ(⌧) with an algebra of type alg : ⌧ ⌧ 0) ⌧

0. The calculus
does not include a general term level fixpoint; the only way to
write a function that recurses on the substructures of a µ-type
is by using the built-in folding operation. While this limits the
operations we can define for a given type, it also ensures that all
well-typed terms in the calculus have a well-defined semantics.

Now, we can extend this expression language with support for
a multiplication operation as follows, where Mul , �X.X⇥X:

mul : N⇥N)N

mul = �x.⇡1 x ⇤⇡2 x

eval : µ(Expr + Mul))N

eval = L expr HHH mul MExpr + Mul

5.2.3 Modular Algebraic Effects using the Free Monad

As our second example we consider how to define modular
algebraic effects and handlers [Plotkin and Pretnar, 2009a] in
terms of the free monad following Swierstra [2008]. First, we

[February 18, 2025 at 13:46 – version 4.2]

5.2 programming with extensible data types 175

define the Free type which constructs a free monad for a given
signature functor f. We can think of a term with type Free f ↵

as a syntactic representation of a monadic program producing a
value of type ↵ with f describing the operations which we can
use to interact with the monadic context.

Free : (? ?) ? ? , �f.�↵.µ(�X.↵+ fX)

Note that the type Free is actually a functor in both its arguments,
and thus there are two ways to “map over” a value of type
Free f ↵; we can transform the values at the leaves using a
function ↵) �, or the shape of the nodes using a natural
transformation 8↵.f ↵) g ↵. The higher-order map can be used,
for example, for defining function that reorders the operations of
effect trees with a composite signature.

reorder : Free (f+ g) ↵) Free (g+ f) ↵

reorder = maph◆2 HHH ◆1iFree

Here, we use higher-order instances at kind ? ? of the coprod-
uct eliminator - HHH -, the coproduct injection functions ◆1, ◆2,
and the functorial map operation maph- i-.

Effect handlers can straightforwardly be implemented as folds
over Free. In fact, the behavior of a handler is entirely defined by
the algebra that we use to fold over the effect tree, allowing us
write a generic handle function:

handle : (↵) �)) (f (Free g �)) Free g �)

) Free (f+ g) ↵) Free g �

handle = �h.�i.L (in � ◆1 � h) HHH i HHH (in � ◆2) M↵+(fX)+(gX)

Here, in is the constructor of a type-level fixpoint (µ). The fold
above distinguishes three cases: (1) pure values, in which case
we return it again using the function h; (2) an operation of the
signature f which is handled using the function i; or (3) an
operation of the signature g which is preserved by reconstructing
the effect tree and doing nothing.

As an example, we consider how to implement a handler for
the Abort effect, which has a single operation indicating abrupt

[February 18, 2025 at 13:46 – version 4.2]

176 types and semantics for extensible data types

termination of a computation. We define its signature functor as
follows:

Abort : ? ? , �X.1

The definition of Abort ignores its argument, X, which is the type
of the continuation. After aborting a computation, there is no
continuation, thus the Abort effect does not need to store one. A
handler for Abort is then defined like so, invoking the generic
handle function defined above:

hAbort : Free (Abort + f) ↵) Free f (Maybe ↵)

hAbort = handle Just (�x.in (◆1 Nothing))

5.2.4 Modular Higher-Order Effects

To describe the syntax of computations that interact with their
monadic context through higher-order operations (that is, opera-
tions whose arguments can themselves also be monadic compu-
tations) we need to generalize the free monad as follows.

Prog : ((? ?) ? ?) ? ? , �f.µ(�X.�↵.↵+ (f X ↵))

Note that, unlike the Free type, Prog is defined as the fixpoint
of a higher-order functor. This generalization allows for signa-
ture functors to freely choose the return type of continuations.
Following Yang et al. [2022], we use this additional expressivity
to describe the syntax of higher-order operations by nesting con-
tinuations. For example, the following defines the syntax of an
effect for exception catching, that we can interact with by either
throwing an exception, or by declaring an exception handler
that first executes its first argument, and only runs the second
computation if an exception was thrown.

Catch : (? ?) ? ? , �X.�↵.1 + (X(X↵)⇥ (X(X↵))

A value of type Prog Catch ↵ is then a syntactic representation
of a monadic program that can both throw and catch exceptions.
From this syntactic representation we can proceed in two differ-
ent ways. The first option is to replace exception catching with

[February 18, 2025 at 13:46 – version 4.2]

5.2 programming with extensible data types 177

an application of the hAbort handler, in line with Plotkin and
Pretnar [2009a] original strategy for capturing higher-order op-
erations. In recent work, Bach Poulsen and Van der Rest [2023]
demonstrated how such abbreviations can be made modular and
reusable by implementing them as algebras over the Prog type.
Following their approach, we define the following elaboration of
exception catching into a first-order effect tree.

eCatch : Prog Catch ↵) Free Abort ↵

eCatch = L (in � ◆1)
HHH (in � ◆2)
HHH (�x.hAbort (⇡1 x)�= maybe (join (⇡2 x)) id)

M↵+Catch X ↵

Here, the applications of monadic bind (�=) and join refer to the
monadic structure of Free. Alternatively, we can define a handler
for exception catching directly by folding over the Prog type,
following the scoped effects approach by Wu et al. [2014]:

hCatch : Prog (Catch + h) ↵) Prog h (Maybe ↵)

hCatch = L (in � ◆1 � Just)

HHH (�x.in (◆1 Nothing))

HHH (�x.⇡1 x�= maybe (⇡2 x�= fwd) id))

HHH (in � ◆2) M↵+(Catch X ↵)+(h X ↵)

Where the function fwd establishes that Maybe commutes with
the Prog type in a suitable way:

fwd : Maybe (Prog h (Maybe ↵))) Prog h (Maybe ↵)

That is, we show that Prog h is a modular carrier for Maybe [Schri-
jvers et al., 2019].

As demonstrated, our calculus supports defining higher-order
effects and their interpretations. To conveniently sequence higher-
order computations we typically also want to use a monadic bind
function, such as�= : Prog h ↵! (↵! Prog h �)! Prog h �.
While it is possible to define monadic bind for Free from Sec-
tion 5.2.3 in terms of a plain fold, defining the monadic bind

[February 18, 2025 at 13:46 – version 4.2]

178 types and semantics for extensible data types

↵,�,�,X, Y 2 String

Kind 3 k ::= ? | k k

KindEnv 3 �,� ::= ; | �,↵ : k

Type 3 ⌧ ::= ↵ | X | ⌧ ⌧ | �X.⌧ | µ(⌧) | ⌧) ⌧

| | 1 | ⌧⇥ ⌧ | ⌧+ ⌧
Scheme 3 � ::= 8↵.� | ⌧

Figure 16: Type syntax
for Prog generally requires a generalized fold [Bird and Paterson,
1999, Yang et al., 2022]. Adding this and other recursion princi-
ples [Meijer et al., 1991] to our calculus is future work.

5.3 the calculus

The previous section demonstrated how a language with built-in
support for functors, folds, and fixpoints provides support for
defining and working with state-of-the-art techniques for type
safe modular programming. In this section we present a core
calculus for such a language. The basis of our calculus is the first-
order fragment of System F

!—i.e., the polymorphic �-calculus
with kinds, where universal quantification is limited to prenex
normal form à la Hindley-Milner. Additionally, the syntax of
types, defined in Figure 16, includes primitives for constructing
recursive types (µ(-)), products (⇥) and coproducts (+), as well
as a unit type (1) and empty type (). In the definition of the
syntax of types, the use of 8-types is restricted by stratifying the
syntax into two layers, types and type schemes. Consequently,
our calculus is, by design, predicative: 8-types can quantify over
types but not type schemes.

The motivation for this predicative design is that it permits a
relatively straightforward categorical interpretation of 8-types in
terms of ends (see Section 5.4.2.3). Whereas the restriction of uni-
versal quantification to prenex normal form is usually imposed to

[February 18, 2025 at 13:46 – version 4.2]

5.3 the calculus 179

facilitate type inference, our calculus does not support inference
in its current form due to the structural treatment of data types.
In a structural setting, inference requires the reconstruction of
(recursive) data type definitions from values, which is, in general,
not possible.

We remark that the current presentation of the type system is
declarative, meaning certain algorithmic aspects crucial for type
checking, such as normalization and equality checking of types,
are not covered in the current exposition. Regarding decidabil-
ity of the type system: our system is a subset of System F!,
whose Church-style formulation is decidable while its Curry-
style formulation is not. As such, we expect our type system
to inherit these properties. Since we are restricting ourselves
to a predicative subset of F!, we are optimistic that the Curry-
style formulation of our type system will be decidable too, but
verifying this expectation is future work.

5.3.1 Well-Formed Types

Types are well-formed with respect to a kind k, describing the
arity of a type’s parameters, if it has any. Well-formedness of
types is defined using the judgment � | � ` ⌧ : k, stating that
the type ⌧ has kind k under contexts � and �. Similarly, well-
formedness of type schemes is defined by the judgment � ` �,
stating that the type scheme � is well-formed with respect to the
context �.

Following Johann et al. [2021], well-formedness of types is
defined with respect to two contexts, one containing functorial
variables (�), and one containing variables with mixed variance
(�). Specifically, the variables in the context � are restricted to
occur only in strictly positive [Abbott et al., 2005b, Coquand and
Paulin, 1988] positions (i.e., they can never appear to the left
of a function arrow), while the variables in � can have mixed
variance. This restriction on the occurrence of the variables in �
is enforced in the well-formedness rule for function types, K-Fun,
which requires that its domain is typed under an empty context
of functorial variables, preventing the domain type from derefer-

[February 18, 2025 at 13:46 – version 4.2]

180 types and semantics for extensible data types

� | � ` ⌧ : k

K-Var
k : ↵ 2 �

� | � ` ↵ : k

K-Fvar
�(X) 7! k

� | � ` X : k

K-App
� | � ` ⌧1 : k1 k2 � | � ` ⌧2 : k1

� | � ` ⌧1 ⌧2 : k2

K-Abs
� | �, (X 7! k1) ` ⌧ : k2
� | � ` �X.⌧ : k1 k2

K-Fix
� | � ` ⌧ : k k

� | � ` µ(⌧) : k

K-Fun
� | ; ` ⌧1 : ? � | � ` ⌧2 : ?

� | � ` ⌧1) ⌧2 : ?

K-Empty

� | � ` : k

K-Unit

� | � ` 1 : k

K-Product
� | � ` ⌧1 : k � | � ` ⌧2 : k

� | � ` ⌧1 ⇥ ⌧2 : k

K-Sum
� | � ` ⌧1 : k � | � ` ⌧2 : k

� | � ` ⌧1 + ⌧2 : k

� ` �SC-Forall
�, (↵ 7! k) ` �
� ` 8↵.�

SC-Type
� | ; ` ⌧ : ?
� ` ⌧

Figure 17: Well-
formedness rules
for types and type
schemes

encing any functorial variables bound in the surrounding context.
While it may seem overly restrictive to require type expressions
to be strictly positive—rather than merely positive—in �, this
is necessary to ensure that µ-types, as well as its introduction
and elimination forms, have a well-defined semantics (see Sec-
tion 5.4.2.1). Variables in � are bound by type-level �-abstraction,
meaning that any type former with kind k1 k2 is functorial
in its argument. In contrast, the variables in � are bound by
8-quantification.

Products (⇥), coproducts (+), units (1) and empty types ()
can be constructed at any kind, reflecting the fact that the cor-
responding categorical (co)limits can be lifted from Set to its
functor categories by computing them pointwise. This pointwise
lifting of these (co)limits to functor categories is reflected in the

[February 18, 2025 at 13:46 – version 4.2]

5.3 the calculus 181

� equalities for these type formers (shown in Figure 20), which
allow an instance at kind k1 k2, when applied with a type
argument, to be replaced with an instance at kind k2.

The well-formed judgements for types effectively define a (sim-
ply typed) type level �-calculus with base “type” ?. Consequently,
the same type has multiple equivalent representations in the pres-
ence of �-redexes, raising the question of how we should deal
with type normalization. The approach we adopt here is to add
a non-syntactic conversion rule to the definition of our type sys-
tem that permits any well-formed term to be typed under an
equivalent type scheme. Section 5.3.3 discusses type equivalence
in more detail.

5.3.2 Well-Typed Terms

Figure 18 shows the term syntax of our calculus. Along with
the standard syntactic forms of the polymorphic �-calculus we
include explicit type abstraction and application, as well as in-
troduction and elimination forms for recursive types (in/unin),
products (⇡1/⇡2/- NNN -), coproducts (◆1/◆2/- HHH -), and the
unit (tt) and empty (absurd) types. Furthermore, the calculus in-
cludes dedicated primitives for mapping (maph- i-) and folding
(L - M-) over a type.

Figure 18 also includes the definition of arrow types. In spirit
of the syntactic notion of natural transformations used by Abel
and Matthes [2002], Abel et al. [2003, 2005] to study generalized
(Mendler) iteration, an arrow type of the form ⌧1

k�! ⌧2 (where
⌧1, ⌧2 : k) defines the type of morphisms between the objects that
interpret ⌧1 and ⌧2. Arrow types are defined by induction over
k, since the precise meaning of morphism for any pair of types
depends on their kind. If k = ?, then a morphism between ⌧1
and ⌧2 is simply a function type. However, if ⌧1 and ⌧2 have one
or more type argument, they are to be interpreted as objects in a
suitable functor category, meaning that their morphisms are nat-
ural transformations. This is reflected in the definition of arrow
types, by unfolding an arrow ⌧1

k�! ⌧2 to a 8-type that closes
over all type arguments of ⌧1 and ⌧2, capturing the intuition that

[February 18, 2025 at 13:46 – version 4.2]

182 types and semantics for extensible data types

x,y 2 String

Env 3 � ::= ; | � , x : �

Term 3 M,N ::= x | M N | �x.M | let (x : �) = M in N

| ⇤↵.M | M @⌧ | in | unin | maphMi⌧ | L M M⌧

| ⇡1 | ⇡2 | M NNN N | ◆1 | ◆2 | M HHH N | tt | absurd

⌧1
?�! ⌧2 , ⌧1) ⌧2 (Arrow Types)

⌧1
(k1 k2)�! ⌧2 , 8↵. ⌧1 ↵

k2�! ⌧2 ↵

where � ` ⌧1
k�! ⌧2 if � | ; ` ⌧1, ⌧2 : k

Figure 18: Term syn-
tax polymorphic functions cor respond to natural transformations.5555 This intuition is

made formal by
Theorem 1 in
Section 5.4.4.

For instance, we would type the inorder traversal of binary trees
as inorder : Tree ? ?�! List (, 8↵.Tree ↵) List ↵), describing a
natural transformation between the Tree and List functors.

The typing rules are shown in shown in Figure 19. The rules
rely on arrow types for introduction and elimination forms. For
example, Products can be constructed at any kind (following
rule K-Product in Figure 17), so the rules for terms that op-
erate on these (i.e., T-Fst, T-Snd, and T-Fork) use arrow types
at any kind k. Consequently, arrow types should correspond
to morphisms in a suitable category, such that the semantics of
a product type and its introduction/elimination forms can be
expressed as morphisms in this category.

5.3.3 Type Equivalence

In the presence of type level �-abstraction and application, the
same type can have multiple representations. For this reason,
the type system defined in Figure 19 includes a non-syntactic
conversion rule that allows a well-typed term to be re-typed un-
der any equivalent type scheme. The relevant equational theory
for types is defined in Figure 20, and includes the customary �
and ⌘ equivalences for �-terms, as well as � rules for product,

[February 18, 2025 at 13:46 – version 4.2]

5.3 the calculus 183

� `M : �

T-Var
x : � 2 �
� ` x : �

T-App
� `M : ⌧1) ⌧2 � ` N : ⌧1

� `MN : ⌧2

T-Abs
� , (x : ⌧1) `M : ⌧2

� ` �x.M : ⌧1) ⌧2

T-Let
� `M : �1 � , x : �1 ` N : �2

� ` let (x : �1) = M in N : �2

T-TypeAbs
� `M : � ↵ /2 freevars(�)

� ` ⇤↵.M : 8↵.�

T-TypeApp
� `M : 8↵.�

� `M @⌧ : �[⌧/↵]

T-In

� ` in : ⌧ µ(⌧)
k�! µ(⌧)

T-Out

� ` unin : µ(⌧)
k�! ⌧ µ(⌧)

T-Map
� `M : ⌧1

k1�! ⌧2

� ` maphMi⌧ : ⌧ ⌧1
k2�! ⌧ ⌧2

T-Fold
� `M : ⌧1 ⌧2

k�! ⌧2

� ` L M M⌧1 : µ(⌧1)
k�! ⌧2

T-Fst

� ` ⇡1 : ⌧1 ⇥ ⌧2
k�! ⌧1

T-Snd

� ` ⇡2 : ⌧1 ⇥ ⌧2
k�! ⌧2

T-Fork
� `M : ⌧

k�! ⌧1 � ` N : ⌧
k�! ⌧2

� `M NNN N : ⌧
k�! ⌧1 ⇥ ⌧2

T-Inl

� ` ◆1 : ⌧1
k�! ⌧1 + ⌧2

T-Inr

� ` ◆2 : ⌧2
k�! ⌧1 + ⌧2

T-Join

� `M : ⌧1
k�! ⌧ � `M : ⌧2

k�! ⌧

� `M HHH N : ⌧1 + ⌧2
k�! ⌧

T-Unit

� ` tt : 1

T-Empty

� ` absurd :
k�! ⌧

T-Conv
� `M : �1 �1 ⌘ �2

� `M : �2

Figure 19: Well-
formed termssum, unit, and empty types. The equations shown in Figure 20

are motivated by the semantic model we discuss in Section 5.4,
in the sense that equivalent types are interpreted to naturally
isomorphic functors. The relation is also reflexive and transitive,
motivated by respectively the identity and composition of natural
isomorphisms. Viewing the equalities in Figure 20 left-to-right

[February 18, 2025 at 13:46 – version 4.2]

184 types and semantics for extensible data types

(�X.⌧1) ⌧2 ⌘ ⌧1[⌧2/X]

(�X.⌧ X) ⌘ ⌧

(⌧1 ⇥ ⌧2) ⌧ ⌘ (⌧1 ⌧)⇥ (⌧2 ⌧)

(⌧1 + ⌧2) ⌧ ⌘ (⌧1 ⌧) + (⌧2 ⌧)

1 ⌧ ⌘ 1

⌧ ⌘

T := [] | T ⌧ | ⌧ T | µ(T) | T) ⌧ | ⌧) T

| T ⇥ ⌧ | ⌧⇥ T | T + ⌧ | ⌧+ T

⌧1 ⌘ ⌧2
T [⌧1] ⌘ T [⌧2]

Figure 20: Equational
theory for types provides us with a basis for a normalization strategy for types,

which would be required for implementing the type system.

5.4 categorical semantics

In this section, we consider how to define a categorical semantics
for our calculus, drawing inspiration from the semantics defined
by Johann and Polonsky [2019] and Johann et al. [2021], Johann
and Ghiorzi [2021]. To define this semantics, we must show that
each type in our calculus corresponds to a functor, and that all
such functors have initial algebras. In Section 5.4.3 we discuss
the requirements for these initial algebras to exist, and argue
informally why they should exist for the functors interpreting our
types. Although Johann and Polonsky [2019] present a detailed
argument for the existence of initial algebras of the functors
underlying nested data types, it is still future work to adapt this
argument to our setting.

The general setup of our semantics is to interpret types of
kind ? as objects in Set (the category of sets), higher-order types
as functors on Set, and type schemes as objects in Set2 (the
category of large sets). This size bump is necessary to model the
universal quantification over types in type schemes. Crucially,
Set is a full subcategory of Set1, as witnessed by the existence of
a fully faithful inclusion functor I:

Set
I

,! Set1

Assuming cumulative universes (i.e., the collection of all large
sets also includes all small sets), I is just the identity functor. We

[February 18, 2025 at 13:46 – version 4.2]

5.4 categorical semantics 185

remark that both Set and Set1 are complete and cocomplete and
cartesian closed. Importantly, since I is fully faithful, the cartesian
closed structure of Set is reflected in Set1 for those objects that
lie in the image of I.

The subcategory relation between Set and Set1 reflects the
syntactic restriction of types to rank-1 polymorphism: all objects
in Set can also be found in Set1, but Set1 is sufficiently larger
than Set that it also includes objects modelling quantification
over objects in Set. This intuition is embodied by fact that every
functor F : Cop ⇥ C! Set1, where C is smaller than Set1 (which
includes Set), has an end in Set1. This follows from completeness
of Set1 [MacLane, 1971, p. 224, corollary 2]. We discuss the use
of ends for modelling universal quantification in more detail in
Section 5.4.2.3.

5.4.1 Interpreting Kinds and Kind Environments

We associate with each kind k a category whose objects interpret
the types of that kind. The semantics of kinds is defined by
induction over k, where we map the base kind ? to Set, and
kinds of the form k1 k2 to the category of functors between
their domain and codomain.56 56 Here, CAT denotes

the (very large) category
of large categories.
Although Set itself is
locally small, its functor
categories have a large
set of morphisms.

J- K : Kind! CAT

J ? K = Set

J k1 k2 K = [J k1 K , J k2 K]

By interpreting types of kind k1 k2 as objects in a functor
category, we formalize the intuition that higher-order types corre-
spond to functors. The semantics of kind contexts is then defined
on a per-entry basis, as a chain of products of the categories that
interpret their elements.

J- K : Context! CAT

J ; K = •
J �,↵ 7! k K = J � K⇥ J k K

Here, • denotes the trivial category, which has a single object, ⇤,
together with its identity morphism, id⇤. It is worth mentioning

[February 18, 2025 at 13:46 – version 4.2]

186 types and semantics for extensible data types

that • and -⇥-, together with the operation of constructing
a functor category, [-,-], imply that CAT is a cartesian closed
category. We will use this cartesian closed structure to give a
semantics to the fragment of well-formed types that corresponds
to the simply-typed �-calculus.

5.4.2 Interpreting Types

Since a well-formed type � | � ` ⌧ : k is intended to be functorial
in all variables in �, it is clear that its semantics should be a
functor over the category associated with � (i.e., J�K). But what
about the variables in �, which can occur both in covariant and
contravariant positions? For example, in the type of the identity
function, 8↵.↵) ↵, we cannot interpret the sub-derivation for
↵) ↵ as a functor over the category interpreting its free vari-
ables since there would not be a sensible way to define its action
on morphisms due to the negative occurence of ↵. To account for
the mixed variance of universally quantified type variables, we
instead adopt a difunctorial semantics, interpreting types as a func-
tor on the product category J�Kop ⇥ J�K (similar representations
of type expressions with mixed variance appear, for example,
when considering Mendler-style inductive types [Uustalu and
Vene, 1999], or the object calculus semantics by Glimming and
Ghani [2004]). Well-formed types (left) and type schemes (right)
are interpreted as a functors over their contexts of the following
form:

J � | � ` ⌧ : k K : (J�Kop ⇥ J�K)⇥ J�K! JkK

J � ` � K : J�Kop ⇥ J�K! Set1

Ultimately, the goal of this setup is to interpret 8-types as ends
in Set1, which allows us to formally argue that terms that are
well-formed with an arrow type of the form ⌧1

k�! ⌧2 (which
unfolds to 8↵̄.⌧1 ↵̄) ⌧2 ↵̄) correspond, in a suitable sense, to
the natural transformations between the functors interpreting
⌧1 and ⌧2. Or, put differently, terms with an arrow type define
a morphism between the interpretation of their domain and
codomain. We discuss the semantics of universal quantification

[February 18, 2025 at 13:46 – version 4.2]

5.4 categorical semantics 187

J� | � ` ↵ : ⌧K = lookup�

↵ � ⇡2 � ⇡1
J� | � ` X : ⌧K = lookup�

X � ⇡2
J� | � ` ⌧1 ⌧2 : k2K = eval � h J� | � ` ⌧1 : k1 k2K, J� | � ` ⌧2 : k1K i

J� | � ` �X.⌧ : k1 k2K = curry(J� | �,X : k1 ` ⌧ : k2K)
J� | � ` µ(⌧) : kK = µ(J� | � ` ⌧ : k kK)

J� | � ` ⌧1) ⌧2 : ?K = exp(J� | ; ` ⌧1 : ?K, J� | � ` ⌧2 : ?K)
J� | � ` : ?K = ?

J� | � ` 1 : ?K = >
J� | � ` ⌧1 ⇥ ⌧2 : kK = J� | � ` ⌧1 : kK⇥ J� | � ` ⌧2 : kK
J� | � ` ⌧1 + ⌧2 : kK = J� | � ` ⌧1 : kK+ J� | � ` ⌧2 : kK

J� ` 8↵.�K = end(curry(J�,↵ : k ` �K � sift))
J� ` ⌧K = I � J� | ; ` ⌧ : ?K

Figure 21: Semantics
of well-formed types
and type schemes

further in Section 5.4.2.3, and give a more precise account of
the relation between arrow types and natural transformations in
Section 5.4.4.

Figure 21 defines the semantics of well-formed types and type
schemes. The interpretation of the empty type, unit type, and
(co)product types follow immediately from (co)completeness of
Set. Since they can be constructed at any kind, the semantics
of (co)product types depends crucially on the fact that functor
categories preserve all (co)limits of their codomain category,
which implies that JkK is (co)complete for any k. To interpret
variables, we utilize the cartesian closed structure of CAT to
compute an appropriate projection based on the position of the
variable in the environment.

lookup�

↵ : J � K! J k K
lookup�,↵:k

↵ 7! ⇡2

lookup�,�:k
↵ 7! lookup�

↵ � ⇡1 (where ↵ 6= �)

[February 18, 2025 at 13:46 – version 4.2]

188 types and semantics for extensible data types

Similarly, the cartesian closed structure of CAT also implies the
existence of functors eval : [C,D]⇥ C ! D and curry(F) : C !
[D,E], for any F : C⇥D ! E, which immediately provide a se-
mantics for type-level application and abstraction respectively.
The remaining type and type scheme constructors are interpreted
using specifically-defined functors. Although their definitions
are typical examples of how (co)limits are lifted to functor cate-
gories by computing them pointwise, we discuss the definition
of these functors separately and in more detail respectively in
Section 5.4.2.1 (recursive types), Section 5.4.2.2 (function types),
and Section 5.4.2.3 (8-types).

5.4.2.1 Recursive Types

Following the usual categorical interpretation of inductive data
types [Goguen, 1976], the semantics of recursive types is given
by an initial algebras. We summarize the setup here. An F-algebra
for an endofunctor F : C ! C is defined as a tuple (A,↵) of an
object A 2 C (called the carrier), and a morphism ↵ : FA ! A.
An algebra homomorphism between F-algebras (A,↵) and (B,�) is
given by a morphism f : A! B such that the following diagram
commutes.

FA A

FB B

↵

Ff f

�

F-algebras and their homomorphisms form a category. If F is
an endofunctor, we denote the initial object of the category of
F-algebras (which, if it exists, we refer to as the initial algebra) as
(µF, in). Initial algebras give a semantics to inductive data types,
with their universal property providing an induction principle.
Given an F-algebra (A,↵), we denote unique F-algebra homomor-
phism that factors through A by cata(↵) : µF! A. Instantiating
the diagram above with cata(↵) gives us the familiar universal
property of folds, cata(↵) � in = ↵ � F(cata(↵)), which defines
their computational behavior.

To interpret recursive types in our calculus, we construct the
functor µ(F), which sends objects pointwise to the initial algebras

[February 18, 2025 at 13:46 – version 4.2]

5.4 categorical semantics 189

of a functor F : C! [D,D]. For a morphism f : X! Y, the action
of µ(F) on f is defined by factoring through the algebra defined
by precomposing the initial algebra of F(Y) with the action of
F on f, which defines a natural transformation F(X)

·! F(Y), at
component µ(F(Y)).

µ(F)(-) : C! D

µ(F)(x) 7! µ(F(x))

µ(F)(f) 7! cata(in � F(f)µ(F(Y)))

In general, it is not guaranteed that an initial algebra exists
for any endofunctor F : C ! C. Typically, the existence of an
initial algebras is shown by iterating F and showing that it con-
verges, applying the classic theorem by Adámek [1974]. This
approach imposes some additional requirements on the functor
F and underlying category C, which we discuss in more detail in
Section 5.4.3.

5.4.2.2 Function Types

The functor exp(-) is defined by mapping onto exponential ob-
jects in Set. But we have to take some additional care to ensure
that we can still define its action on morphism, as the polarity of
free variables is reversed in domain of a function type. Indeed,
when computed pointwise, exponential objects give rise to a
bifunctor of the form Cop ! C ! C, meaning that functors are
not, in general, closed under exponentiation. To some extent we
anticipated this situation already in the design of our type system
by defining the well-formedness rule for function types such that
the context of functorial variables, �, is discarded in its domain.
Of course, the variables in � can occur both in covariant and
contravariant positions, but by adopting a difunctorial semantics
we limit ourselves to a specific class of functors that is closed un-
der exponentiation. The key observation is that constructing the
opposite category of the product of a category and its opposite is
an idempotent (up to isomorphism) operation. That is, we have
the following equivalence of categories: (Cop ⇥ C)op ' C

op ⇥ C.
As a result, a pointwise mapping of difunctors to exponential
objects does give rise to a new difunctor. We use this fact to

[February 18, 2025 at 13:46 – version 4.2]

190 types and semantics for extensible data types

our advantage to define the following functor exp(F,G) for func-
tors F : Cop ⇥ C ! E and G : (Cop ⇥ C)⇥D ! E, of which the
interpretation of function types is an instance.

exp(F,G)(-) : (Cop ⇥ C)⇥D! E

exp(F,G)((x,y), z) 7! G((x,y), z)F(y,x)

exp(F,G)((f,g),h)

7! curry(G((f,g),h) � eval � (idexp(F,G)((x,y),z) ⇥ F(g, f))

We remark that exp(F,G) does not define an exponential object in
the functor category [(Cop ⇥ C)⇥D,E]. Fortunately, for defining
the semantics of term level �-abstraction or application it is
sufficient that the action on objects maps to exponentials in Set.

5.4.2.3 Universal quantification

The semantics of universal quantifications is expressed in terms
of ends in the category Set1. If F : Cop ⇥ C ! D is a functor,
then an end of F is an object

R
x2C F(x, x) 2 D equipped with

a projection map given by an extranatural transformation ⇡x :R
c2C F(c, c) ! F(x, x). Formally, and end of the F is defined as

the universal wedge of the following diagram:

F(x, x)
F(idx,f)�! F(x,y)

F(f,idy) � F(y,y)

For all x,y 2 C and f : x! y. The universal property of ends then
states that any other wedge W 2 D with maps i : W ! F(x, x)
and j : W ! F(y,y) uniquely factors through

R
c2C F(c, c).

W F(x, x)

R
c2C F(c, c) F(y,y) F(x,y)

i

j

factor(W)
F(idx,f)

⇡x

⇡y F(f,idy)

To model the more general situation where a 8-quantified type
can contain free variables that are bound by another quantifier
above it in the lexical hierarchy, we define the semantics of uni-
versal quantification in terms of the end functor, end(-), which for
a functor G : C! [Dop ⇥D,E] defines a functor end(G) : C! E

[February 18, 2025 at 13:46 – version 4.2]

5.4 categorical semantics 191

whose object action is computed pointwise from ends in E. Its ac-
tion on morphisms, end(f) :

R
d2DG(X)(d,d)!

R
d2DG(Y)(d,d),

follows from the universal property stated above. To define the
action on morphisms, we observe that the object

R
d2DG(X)(d,d)

is a wedge of the following diagram.

G(Y)(x, x)
G(Y)(idx,f)�! G(Y)(x,y)

G(Y)(f,idy) � G(Y)(y,y)

Where the vertices of the cone are constructed by composing
the projection map with the action of G on f, i.e., G(f)(x, x) � ⇡x.
By universality, this wedge uniquely factors through the endR
d2DG(Y)(d,d). This factorization defines the morphism action

end(f).

end(G)(-) : C! E

end(G)(x) 7!
R
d2DG(x)(d,d)

end(G)(f) 7! factor(
R
d2DG(x)(d,d))

An important subtlety here is that F(X) should have an end in E

for every X. In our case, this is a consequence of completeness of
Set1.57 To actually use the functor end to define the semantics of 57 See Mac

Lane [MacLane, 1971]
chapter 9.5 corollary 2.

universal quantifications, we need to precompose the semantics
of its body with the sift functor to separate the quantified variable
from the remainder of the context.

sift : (J�K⇥ JkK)op ⇥ (J�K⇥ JkK))⇥ J�K
! ((J�Kop ⇥ J�K)⇥ J�K)⇥ (JkKop ⇥ JkK)

We note that sift defines an isomorphism in CAT.

5.4.3 On the Existence of Initial Algebras

In general, it is not the case that any endofunctor has an initial
algebra. For certain classes of endofunctors, it can be shown that
an initial algebra exists by means of Adámek’s theorem [Adámek,
1974]. Here, we present a condensed argument for why we expect
that functors interpreting well-formed types of kind k k (for
any k) have initial algebras; a more thorough formal treatment of
the construction of initial algebras is a subject of further study.

[February 18, 2025 at 13:46 – version 4.2]

192 types and semantics for extensible data types

The intuition behind Adámek’s construction is that repeated
applications of an endofunctor F : C! C converge after infinite
iterations, reaching a fixpoint. If C has an initial object and !-
colimits,58 we can define the initial algebra of F as the !-colimit58 That is, colimits over

diagrams defined as a
functor on the thin

category generated from
the poset of natural

numbers.

of the following chain:

? !�! F? F!�! FF? FF!�! FFF? FFF!�! . . .

Where ? is the initial object in C and !X : ? ! X the unique
map from ? to X. A crucial stipulation is that F should be !-
cocontinuous, meaning that it preserves !-colimits.

Thus, for the functors interpreting higher-order types to have
an initial algebra, we must argue that all higher-order types
are interpreted to a !-cocontinuous functor. This prompts a
refinement of the semantics for kinds discussed in Section 5.4.1,
where we impose the additional restriction that the interpretation
of a kind of the form k1 k2 is a !-cocontinuous functor from
Jk1K to Jk2K. Subsequently, we must show that Figure 21 actually
inhabits this refined semantics.

Johann and Polonsky [2019] present an inductive argument
showing the existence of initial algebras for a universe of higher-
kinded data types is similar to our definition of well-formed
terms in Figure 17. While their proof establishes the more general
property of �-cocontinuity (for an arbitrary limit ordinal �) for
the functors interpreting higher-kinded types, we expect that the
relevant cases of their inductive proof—specifically the cases for
products, coproducts, type application, and the µ functor—can
be adapted to our setting. What remains is to show that the
semantics of type level �-abstraction and function types is a !-
cocontinuous functor. For �-abstraction, we transport along the
currying isomorphism, which should preserve !-cocontinuity.
For function types, we require that the functor (-)X : Set! Set
is!-cocontinuous for all X, which, as Johann and Polonsky [2019]
point out, is indeed the case. Expanding this proof sketch into a
full proof of the existence of initial algebras is future work.

[February 18, 2025 at 13:46 – version 4.2]

5.4 categorical semantics 193

5.4.4 Arrow Types Correspond to Morphisms

To define the semantics of well-typed terms, it is crucial that
we can relate arrow types—i.e., of the form ⌧1

k�! ⌧2—to mor-
phisms in the category JkK. To make this more precise, consider
the typing rule for left projections. To define its semantics, we
would like to use the cartesian structure of the category JkK,
which implies the existence of a morphism ⇡1 : JkK(x⇥ y, x) for
x,y 2 JkK. However, the rule T-Fst implies that ⇡1 should be
related to an object in Set1, i.e., J⌧1 ⇥ ⌧2

k�! ⌧1K. To mediate
between morphisms in JkK and objects in Set1 calls for a suitable
currying/uncurrying isomorphism for arrow types, though we
highlight that the required isomorphism is different from the
usual currying isomorphism arising from the existence of right
adjoints for the tensor product in closed monoidal catetegories,
in the sense that J⌧1

k�! ⌧2K does not define an internal hom
for the objects J⌧1K, J⌧2K but rather inernalizes the morphisms
between these objects in a different category.

Theorem 1. Given a kind k, morphisms of the category JkK are in-
ternalized as objects in Set1 through the following bijection between
hom-sets:

JkK(F(�)⇥ J⌧1K(��), J⌧2K(�)) ' Set1(F(�), J⌧1
k�! ⌧2K(�)) (2)

Where � 2 J�Kop ⇥ J�K and �� 2 (J�Kop ⇥ J�K)op its complement,
which is defined by swapping the objects representing contravariant
respectively covariant occurrences of the variables in �. Let F : J�Kop⇥
J�K! Set1 be a functor. In a slight abuse of notation, we also write
F(�) for the “lifting” of F to an object in the (functor) category JkK that
ignores all the additional variables on which J⌧1K and J⌧2K depend.

Proof. Figure 22 shows how the isomorphism in Equation (2)
is computed. The first step of the derivation rewrites the left-
hand side of the isomorphism to a sequence of zero or more
ends in the category of very large sets, allowing us to apply
currying for exponentials in Set1 in the subsequent step. This
is justified by cartesian closedness of Set, because the objects
J⌧1K(��)(x1) · · · (xn) and J⌧2K(�)(x1) · · · (xn) are included in the

[February 18, 2025 at 13:46 – version 4.2]

194 types and semantics for extensible data types

JkK(F(�)⇥ J⌧1K(��), J⌧2K(�))

=

Z

x12Jk1K
· · ·

Z

xn2JknK
Set1(F(�)⇥ J⌧1K(��)(x1) · · · (xn), J⌧2K(�)(x1) · · · (xn))

'
Z

x12Jk1K
· · ·

Z

xn2JknK
Set1(F(�), J⌧2K(�)(x1) · · · (xn)J⌧1K(��)(x1)···(xn))

' Set1(F(�),
Z

x1

· · ·
Z

xn

J⌧2K(�)(x1) · · · (xn 2 JknK)J⌧1K(��)(x1)···(xn))

' Set1(F(�), J⌧1
k�! ⌧2K(�))

Figure 22: Derivation
of the isomorphism in
Equation (2), where
k = k1 · · ·
kn ?

image of the fully faithful inclusion functor I. Next, we use the
fact that the covariant hom-functor Set1(x,-) is continuous and
thus preserves ends:59

59 See MacLane [1971],
page 225 Equation 4.

Z

y2C
Set1(x,G(y,y)) ' Set1(x,

Z

y2C
G(y,y)) (3)

By repeatedly applying the identity above, we can distribute the
aforementioned sequence of ends over the functor Set1(F(�),-).
Intuitively, this corresponds to distributing universal quantifica-
tion over logical implication in the scenario that the quantified
variable does not occur freely in the antecedent, which is axiom-
atized in some flavors of first-order logic, though we apply a
much more general instance of the same principle here. The final
step then follows from the standard definition of ⌘-equivalence
implied by cartesian closedness of CAT.

We write "(-)/#(-) for the functions that transport along the
isomorphism defined in Equation (2).

5.4.5 Interpreting Terms

Well-typed terms, of the form � ` M : �, are interpreted as
natural transformations from the interpretation their context,
J�K, to the interpretation of their type, J�K. At component � 2

[February 18, 2025 at 13:46 – version 4.2]

5.4 categorical semantics 195

J� ` x : �K� = lookup�

x

J� `M N : ⌧2K� = eval � hJ� `M : ⌧1) ⌧2K�, J� ` N : ⌧1K�i
J� ` �x.M : ⌧1) ⌧2K� = curry(J� , x : ⌧1 `M : ⌧2K�)

J� ` let (x : �1) = M in N : �2K� = eval � hcurry(J� , x : �1 ` N : �2K�), J� ` N : �1K�i
J� ` ⇤↵.M : 8↵.�K� = J� `M : �K� (isomorphic per Equation (3))

J� `M@⌧ : �[⌧/↵]K� = ⇡J⌧K � J� `M : 8↵.�K�
J� ` in : ⌧ µ(⌧)

k�! µ(⌧)K� = "(in � ⇡2)

J� ` unin : µ(⌧)
k�! ⌧ µ(⌧)K� = "(unin � ⇡2)

J� ` maphMi⌧ : ⌧ ⌧1
k2�! ⌧ ⌧2K� = "(�(�, x).J⌧K(�)(�y. #(J� `M : ⌧1

k1�! ⌧2K�)(�,y)))

J� ` L M M⌧1 : µ(⌧1)
k�! ⌧2K� =

"(�(�, x).cata(�y. #(J� `M : ⌧1 ⌧2
k�! ⌧2K�)(�,y)))

J� ` ⇡1 : ⌧1 ⇥ ⌧2
k�! ⌧1K� = "(⇡1 � ⇡2)

J� ` ⇡2 : ⌧1 ⇥ ⌧2
k�! ⌧2K� = "(⇡2 � ⇡2)

J� `M NNN N : ⌧
k�! ⌧1 ⇥ ⌧2K� =

"(h #(J� `M : ⌧
k�! ⌧1K�) , #(J� ` N : ⌧

k�! ⌧2K�) i)

J� ` ◆1 : ⌧1
k�! ⌧1 + ⌧2K� = "(◆1 � ⇡2)

J� ` ◆2 : ⌧2
k�! ⌧1 + ⌧2K� = "(◆2 � ⇡2)

J� `M HHH N : ⌧1 + ⌧2
k�! ⌧K� =

"([#(J� `M : ⌧1
k�! ⌧K�) , #(J� ` N : ⌧2

k�! ⌧K�)])
J� ` tt : 1K� = ! (the unique morphism to the terminal object)

J� ` absurd :) ⌧K� = curry(h � ⇡2)

Figure 23: Semantics
of Well-Typed TermsJ�Kop ⇥ J�K this transformation is given by a function with the

following type:

J � `M : � K� : J � K(�)! J � K(�)

Here, J�K is defined componentwise by mapping contexts to a left-
associated product of its elements, analogous to how we defined

[February 18, 2025 at 13:46 – version 4.2]

196 types and semantics for extensible data types

the interpretation of kind contexts in Section 5.4.1. Figure 23
shows the interpretation of well-typed terms in its entirety.

The interpretation of �-abstraction and application is defined in
terms of the cartesian closed structure of Set, which is preserved
by its inclusion in Set1. For a type abstractions of the form ⇤↵.M,
its semantics follows from the fact that hom-functors preserves
ends (see Equation (3)), which implies a bijection between the
set of morphisms that interprets the type abstraction and the
set of morphisms into which we interpret its body. We remark
that this only works because ↵ does not occur free in � , meaning
that we know that J� K does not depend on ↵ in J� ` M :

�K�,(↵,↵) : J�K(�, (↵,↵)) ! J�K(�, (↵,↵)), and thus we can view
J�K as a constant when applying the isomorphism. The semantics
of a type application M @⌧ is then given by the projection map
at component J⌧K of the end interpreting the type of M. For
the introduction and elimination forms of (co)product types,
and the unit and empty type, we define the semantics in terms
of the corresponding (co)limits in Set1, applying the currying
isomorphism defined in Equation (2) to mediate with arrow types.
Similarly, a semantics for the mapping and folding primitives also
follows from the currying isomorphism defined in Equation (2).

Both the denotation function J - K as well as the function it
computes are total. Consequently, a well-typed value can be com-
puted from every well-typed term. In this sense, the categorical
model provides us with a sound computational model of the
calculus, which we could implement by writing a definitional
interpreter [?]. In the next section, we will discuss how a more
traditional small-step operational semantics can be derived from
the same categorical model.

5.5 operational semantics

The previous section gave an overview of a categorical semantics
of our calculus. In this section, we define a small-step operational
semantics for our calculus, and discuss how it relates to the
categorical model.

[February 18, 2025 at 13:46 – version 4.2]

5.5 operational semantics 197

v := �x.M | ⇤↵.M | in ⌧ v | unin ⌧ v | (v1 NNN v2) ⌧ v (Values)

| ◆1 ⌧ v | ◆2 ⌧ v | maphvi⌧0
⌧ | L v M⌧0

⌧ | ⇡1 ⌧ | ⇡2 ⌧

| (v1 HHH v2) ⌧ | tt ⌧ | absurd ⌧ v

E := [] | E M | v E | E ⌧ | let (x : �) = E in M | let (x : �) = v in E (Contexts)

| maphEi⌧ | L E M⌧ | E NNNM | v NNN E | E HHHM | v HHH E

Figure 24: Values and
Evaluation Contexts.
Highlights indicate

optional occurrences
of (type) arguments.

5.5.1 Reduction Rules

We define our operational semantics as a reduction semantics
in the style of Felleisen and Hieb [1992]. Figure 24 shows the
definition of values and evaluation contexts. In our definition
of values, we must account for the fact that language primitives
can exist at any kind. For example, the primitive ◆1 by itself is a
value of type ⌧1

k�! ⌧1 + ⌧2. Simultaneously, applying ◆1 with
a value and/or a sequence of type arguments (the number of
which depends on the kind of its arrow type), also yields a value.
In fact, all the partial applications of ◆1 with only some of its type
arguments, or all type arguments but no value argument, are
also values. We use gray highlights to indicate such an optional
application with type and/or value arguments in the definition
of values.

Figure 25 defines the reduction rules. We split the rules in two
categories: the first set describes �-reduction60 for the various 60 Here, we mean

“�-reduction” in the
more general sense of
simplifying an
application of an
elimination form to an
introduction form.

type formers, while the second set determines how the maph-
i- primitive computes. Similar to the definition of values and
contexts in Figure 24, we use the notation ⌧ to depict a sequence
of zero or more type applications. Unlike for values, these type
arguments are not optional; terms typed by an arrow types
must be fully applied with all their type arguments before they
reduce. The notation N •M is used as a syntactic shorthand for
the composition of two arrow types, which is defined through
⌘-expansion of all its type arguments and the term argument.
The reduction rules for the maph⌧iM primitive are type directed,
in the sense that the selected reduction depends on ⌧. This is

[February 18, 2025 at 13:46 – version 4.2]

198 types and semantics for extensible data types

((�x.M) v �! M[v/x] (1)

let (x : �) = v in M �! M[v/x] (2)

(⇤↵.M) ⌧ �! M[⌧/↵] (3)

unin ⌧ (in ⌧ v) �! v (4)

L v1 M⌧0
⌧ (in ⌧ v2) �! v1 ⌧ (maphL v1 M⌧0i⌧0

⌧ v2) (5)

⇡1 ⌧ ((v1 NNN v2) ⌧ v) �! v1 ⌧ v (6)

⇡2 ⌧ ((v1 NNN v2) ⌧ v) �! v2 ⌧ v (7)

(v1 HHH v2) ⌧ (◆1 ⌧ v)) �! v1 ⌧ v (8)

(v1 HHH v2) ⌧ (◆2 ⌧ v)) �! v2 ⌧ v (9)

maphv1i(�X.X)
⌧ v2 �! v1 ⌧ v2 (10)

maphv1iµ(⌧0)
⌧ (in ⌧ v2) �! in ⌧ (maphv1i(⌧

0
µ(⌧0))

⌧ v2) (11)

maphvi⌧1⇥⌧2 ⌧ ((v1 NNN v2) ⌧ v3)

�! ((maphvi⌧1 • v1) NNN (maphvi⌧2 • v2)) ⌧ v3 (12)

maphv1i⌧1+⌧2 ⌧ (◆1 ⌧ v2) �! ◆1 ⌧ (maphv1i⌧1 ⌧ v2) (13)

maphv1i⌧1+⌧2 ⌧ (◆2 ⌧ v2) �! ◆2 ⌧ (maphv1i⌧2 ⌧ v2) (14)

maphvi1 ⌧ (tt ⌧) �! tt ⌧ (15)

N •M , ⇤↵.�x.N ↵ (M ↵ x)

Figure 25: Reduction
rules necessary, because in an application of maph - i- to a value,

there is no way to decide whether to apply the function or to
push the maph- i- further inwards by only looking at the value.

5.5.2 Relation to the Denotational Model

The reduction rules shown in Figure 25 define a computational
model for our calculus. We now discuss how this model arises
from the denotational model discussed in Section 5.4. Informally
speaking, reducing a term should not change its meaning. This
intuition is reflected by the following implication, which states if
M reduces N, their semantics should be equal.61

61 This property
implies what

Devesas Campos and
Levy [2018] call

soundness of the
denotational model with

respect to the
operational model. Their

soundness property is
about a big-step
relation; ours is

small-step.

[February 18, 2025 at 13:46 – version 4.2]

5.5 operational semantics 199

M �! N =) JMK = JNK (4)

While we do not give a formal proof of the implication above, by
relying on the categorical model to inform how terms compute
we can be reasonably confident that our semantics does not
contain any reductions that violate this property. That is, all the
reductions shown in Figure 25 are supported by an equality of
morphisms in the categorical model.

What does this mean, specifically? The semantics of well-typed
terms is given by a natural transformation, so if M �! N, M
and N should be interpreted as the same natural transformation.
Equivalence of natural transformations is defined pointwise in
terms of the equality relation for morphisms in the underlying
category. In our case, this is the category Set, as terms are in-
terpreted as natural transformations between functors into Set.
By studying the properties—expressed as equalities between
morphisms—of the constructions that give a semantics to the
different type formers, and reifying these equalities as syntactic
reduction rules, we obtain an operational model that we conjec-
ture respects the denotational model by construction.

Let us illustrate this principle with a concrete example. The
semantics of a sum type ⌧1 + ⌧2 : k is given by a coproduct in the
category JkK. The universal property of coproducts tells us that
[f,g] � ◆1 = f and [f,g] � ◆2 = g, or in other words, constructing
and then immediately deconstructing a coproduct is the same
as doing nothing. Rules (8) and (9) in Figure 25 reflect these
equations. That is, since the ◆1, ◆2, and - HHH - primitives are
interpreted as the injections ◆1, ◆2, and unique morphism [-,-]

respectively, the universal property of coproducts tells us that the
left-hand side and right-hand side of rule (8) and (9) in Figure 25
are interpreted to equal morphism in the categorical domain.

The remaining reduction rules are justified by the categorical
model in a similar fashion. More specifically:

• Rules (1,2) follow from the �-law for exponential objects,
which states that eval � hcurry(f), idi = f.

[February 18, 2025 at 13:46 – version 4.2]

200 types and semantics for extensible data types

• Rule (3) holds definitionally, assuming type substitution is
appropriately defined such that it corresponds to functor
application.

• Rule (4) follows from Lambek’s lemma, which states that
the component of an initial algebra is always an isomor-
phism. That is, there exists a morphism unin such that
unin � in = id.

• Rule (5) reflects the universal property of folds, i.e., cata(f) �
in = f � F(cata(f)).

• Rules (6,7) follow from the universal property of products,
which states that ⇡1 � hf,gi = f and ⇡2 � hf,gi = g.

• Rule (10) mirrors the identity law for functors, i.e. F(id) =
id.

• Rule (11) is derived from naturality of the component of
the initial algebra of higher-order functors, which states
that µ(F)(f) � in = in � F(µ(F))(f).

• Rule (12,13,14,15) are derived from the way (co)-limits are
computed pointwise in functor categories. For example, the
morphism action of the product of two functors F and G is
defined as (F⇥G)(f) = hF(f) � ⇡1,G(f) � ⇡2i, which gives
rise to rule (12).

5.6 related work

The problem of equipping functional languages with better sup-
port for modularity as been studied extensively in the literature.
One of the earlier instances is the Algebraic Design Language (ADL)
by Kieburtz and Lewis [1995], which features language primi-
tives for specifying computable functions in terms of algebras.
ADL overlaps to a large extent with the first-order fragment of
our calculus, but lacks support for defining nested data types.
Zhang et al. [2021] recently proposed a calculus and language
for compositional programming, called CP. Their language design
is inspired by object algebras, which in turn is based on the tagless

[February 18, 2025 at 13:46 – version 4.2]

5.6 related work 201

final approach [Carette et al., 2009a, Kiselyov, 2010] and final
algebra semantics [Wand, 1979], which, according to [Wand, 1979,
§7], is an extension of initial algebra semantics. These lines of work
thus provide similar modularity as initial algebra semantics, but
in a way that does not require tagged values. While the categorical
foundations of Zhang et al.’s CP language seems to be an open
question, the language provides flexible support for modular
programming, in part due to its powerful notion of subtyping.
We are not aware of attempts to model (higher-order) effects and
handlers using CP. In contrast, our calculus is designed to have a
clear categorical semantics. This semantics makes it straightfor-
ward to define state of the art type safe modular (higher-order)
effects and handlers. Morris and McKinna [2019a] define a lan-
guage that has built-in support for row types, which supports both
extensible records and variants. While their language captures
many known flavors of extensibility, due to parameterizing the
type system over a so-called row theory describing how row types
behave under composition, rows are restricted to first order types.
Consequently, they cannot describe any modularity that hinges
on the composition of (higher-order) signature functors.

The question of including nested data types in a language’s
support for modularity has received some attention as well. For
example, Cai et al. [2016] develop an extension of F! with equire-
cursive types tailored to describe patterns from datatype generic
programming. Their calculus is expressive enough to capture the
modularity abstractions discussed in this paper, including those
requiring nested data types, but lacks a denotational model; a
correspondence between a subset of types in their calculus and
(traversable) functors is discussed informally. Similarly, Abel
et al. [2005] consider an operational perspective of traversals over
nested datatypes by studying several extensions of F! with prim-
itives for (generalized) Mendler iteration and coiteration. Although
these are expressive enough to describe modular higher-order
effects and handlers, their semantic foundation is very different
from the semantics of the primitive fold operation in our calculus.
It is future work to investigate how our calculus can be extended
with support for codata.

[February 18, 2025 at 13:46 – version 4.2]

202 types and semantics for extensible data types

A major source of inspiration for the work in this paper are
recent works by Johann and Polonsky [2019], Johann et al. [2021],
and Johann and Ghiorzi [2021], which respectively study the
semantics and parametricity of nested data types and GADTs.
For the latter, the authors develop a dedicated calculus with a
design and semantics that is very similar to ours. Still, there are
some subtle but key differences between the designs; for example,
their calculus does not include general notions of 8-types and
function types, but rather integrates these into a single type
representing natural transformations between type constructors.
While their setup does not require the same stratification of the
type syntax we adopt here, it is also slightly less expressive, as
the built-in type of transformations is restricted to closing over
0-arity arguments.

Data type generic programming commonly uses a universe of
descriptions [Benke et al., 2003], which is a data type whose inhab-
itants correspond to a signature functor. Generic functions are
commonly defined by induction over these descriptions, ranging
over a semantic reflection of the input description in the type
system of a dependently-typed host language [Dagand, 2013a].
In fact, Chapman et al. [2010a] considered the integration of
descriptions in a language’s design by developing a type theory
with native support for generic programming. We are, however,
not aware of any notion of descriptions that corresponds to our
syntax of well-formed types.

5.7 conclusion and future work

In this paper, we presented the design and semantics of a calculus
with support for modularity. We demonstrated it can serve as a
basis for capturing several well-known programming patterns for
retrofitting type-safe modularity to functional languages, such as
modular interpreters in the style of Data Types à la Carte, and
modular (higher-order) algebraic effects. The formal semantics
associates these patterns with their motivating concepts, creating
the possibility for a compiler to benefit from their properties such
as by performing fusion-based optimizations.

[February 18, 2025 at 13:46 – version 4.2]

5.7 conclusion and future work 203

postscript

This chapter contributed a core calculus that nicely captures the
essence of how extensible data types can be incorporated in the
design of a functional meta language in a principled way. How
do we connect this result to the overarching goal of enabling
language designers to define reusable programming language
components as intrinsically-typed definitional interpreters?

There are several steps to take. First and foremost, the results
should be extended to be able to describe modularity of indexed
data types, as discussed in Section 2.2, to allow us to encode
intrinsically-typed interpreters in the language. This introduces
additional challenges, as functions that eliminate indexed data
types locally rely on additional equalities to rule out redundant
cases for ill-typed inputs. Beyond that, a key selling point of
intrinsically-typed definitional interpreters is their readability,
which is mostly due to dependent pattern matching [Cockx, 2017].
A meta language design should include this, and other syntac-
tical conveniences, to be a feasible option for defining reusable
programming language components.

[February 18, 2025 at 13:46 – version 4.2]

[February 18, 2025 at 13:46 – version 4.2]

C O N C L U S I O N S

205

[February 18, 2025 at 13:46 – version 4.2]

[February 18, 2025 at 13:46 – version 4.2]

6
C O N C L U S I O N S

The core problem we addressed in this thesis is the high devel-
opment cost associated with the development of programming
languages with formally specified type systems and verified type
soundness. To reduce this cost, we pinpointed two areas in which
it is necessary to make progress:

1. the development of semantic techniques that allow us to
specify the semantics of language constructs in a way that
is independent of the context (i.e., language) in which they
are used, and

2. the design of (functional) meta-languages that support mod-
ularity out-of-the-box, that can be used to define modular
and reusable language components without having to deal
with the additional overhead that is usually incurred by
modularity.

In the remainder of this chapter, we will revisit the contribu-
tions of this thesis, and reflect on these contributions in light of
the hypotheses from Section 1.2.

6.1 summary of the contributions

Each chapter in this thesis contains its own contributions. Here,
we summarize the core contributions of this thesis.

In Chapter 2, we showed how to embed modular intrinsically-
typed definitional interpreters in Agda, and developed a notion
of intrinsically-typed language fragments, that form a self-contained,

207

[February 18, 2025 at 13:46 – version 4.2]

208 conclusions

type safe, and modular specification of a language construct.
Language fragments can be freely composed and reused to build
bigger programming languages in a way that all these properties
are preserved.

In Chapter 3, we defined abstractions for defining modular
semantics for higher-order effects, and developed reasoning infras-
tructure to prove these semantics correct with respect to equa-
tional theories that give an axiomatic specification of an effect’s
intended behavior. This enables us to give a modular semantics to
language constructs such as �-abstraction or exception catching,
and reason about the correctness of these semantics.

In Chapter 4, we developed the design of a domain-specific
meta language for defining reusable programming language
components. Key features of the design are an effect system that
supports higher-order effects, and native support for modular data
types. As a result, the language allows us to write modular inter-
preters (effectively solving the expression problem [Wadler, 1998])
without having to resort to shallow embeddings of initial algebra
semantics.

Finally, in Chapter 5, we presented a core calculus with built-in
primitives for modularity, together with a type system and seman-
tics. The calculus is expressive enough to capture many familiar
programming abstractions for modularity, such as modular data
types in the style of Data Types á la Carte [Swierstra, 2008], or
inductively-defined free monads. The calculus provides a for-
mal basis for understanding languages with built-in support for
modular data types, such as the language design from Chapter 4.

6.2 hypothesis 1 : intrinsically-typed interpreters

In part I of this thesis (Chapters 2 and 3), we explored the follow-
ing hypothesis:

reusable programming language components should
be concise, readable, and safe-by-construction. Intrinsically-
typed definitional interpreters are an excellent match
for these requirements.

[February 18, 2025 at 13:46 – version 4.2]

6.2 hypothesis 1 : intrinsically-typed interpreters 209

In Chapter 2, we developed techniques for writing modular
intrinsically-typed definitional interpreters. Crucially, we pin-
pointed canonicity-preserving separation and inclusion predicates
(Section 2.3) that witness respectively type-safe union and exten-
sion of value domains. These turned out to be the key ingredients
for defining intrinsically-typed interpreters in a way that they
can be composed in a safe-by-construction manner.

This is, however, a mere first step towards leveraging intrinsically-
typed definitional interpreters for the specification of reusable
programming language components. As we pointed out in Sec-
tion 2.5, the abstractions developed in Chapter 2 necessarily
presuppose both the notion of typing and semantics used to de-
fine a language fragment. Although the techniques we developed
for modularizing intrinsically-typed definitional interpreters can
be generalized to languages with lexical binding that denote into
a more expressive semantic domain (Section 2.5), this leaves the
question of whether the techniques apply to language compo-
nents that do not fit this abstraction. Beyond that it is also still an
open question whether language fragments could be generalized
even further to allow the language designer to choose a flavor of
typing and semantics that fits their language project.

Another question left open at the end of Chapter 2 is how
to adequately deal with side effects of the interpreter. In the
setup used in Section 2.5, we make the assumption that a suitable
monad exists that encapsulates all the required side effects for
denoting a particular combination of language fragment. De-
pending on the combination of effects, constructing this monad
may actually be tricky. Specifically, if we require higher-order
effects and/or intrinsically-typed effects 62 to denote a language, 62 An example of a

monad modelling
intrinsically-typed
effects is the monad
used by Bach Poulsen
et al. [2018] to denote a
language with
polymorphic references.

existing treatments of modular effects are insufficient.
In Chapter 3, we give a partial answer to this question, by

developing a unified approach for defining modular semantics
for higher-order effects by elaborating them to algebraic effects.
While the approach solves the modularity problem for higher-
order effects, it is not equipped to deal with intrinsically-typed
effects yet. As a result, we cannot yet use it to define the monad(s)
assumed in Section 2.5 in a modular fashion. Most likely, this

[February 18, 2025 at 13:46 – version 4.2]

210 conclusions

would require us to generalize the current approach, where we
construct monad morphisms between different free monads in
the category of Agda sets, to categories of monotone predicates
to add the necessary world-indexing for modelling intrinsically-
typed effects such as well-typedness of polymorphic references.

All in all, we conclude that the contributions presented in
Chapters 2 and 3 provide us with a solid basis for understanding
modularity of intrinsically-typed interpreters and higher-order
effects. Within the current state of affairs we can already construct
reusable language components for many different language con-
structs by writing intrinsically-typed definitional interpreters.
However, before we can scale the approach to more advanced
type systems, such as the interpreters for imperative languages
by Bach Poulsen et al. [2018] or the interpreter for linear session-
typed languages by Rouvoet et al. [2020], there are some open
research questions to be addressed first. Even more expressive
systems, such as System F and dependent type theory, remain out
of reach until the intrinsically-typed approach has been extended
to these languages.

6.3 hypothesis 2 : meta language design

In part II (Chapters 4 and 5) of this thesis, we explored the
following hypothesis:

modularity adds significant syntactic and interpreta-
tive overhead when using state-of-the art (dependently-
typed) programming languages to define reusable
programming language components. Incorporating
modular inductive data types in the design of func-
tional languages is therefore a essential first step in
the development of meta languages for the purpose
of defining reusable programming language compo-
nents.

In Chapter 4, we presented a meta language design for defin-
ing reusable programming language components, that features
built-in support for modular data types. The language supports

[February 18, 2025 at 13:46 – version 4.2]

6.4 future work 211

the definition of modular interpreters, solving the expression
problem [Wadler, 1998], without incurring the usual syntactic
overhead associated with the encodings of initial algebra se-
mantics that are typically used to retrofit this kind of type-safe
modularity to functional languages. However, the language lacks
a formal specification of its type system and semantics.

In Chapter 5, we worked towards addressing this shortcoming
by developing a calculus with built in support for modularity,
together with a type system and semantics. While this does allow
us to encode many common programming abstractions for mod-
ularity in a type-safe manner (including the kind of language
components we defined in Chapter 4), there is still a gap between
the languages. To close this gap we would need to, for example,
define a desugaring from the meta language defined in Chapter 4
to the calculus defined in Chapter 5. Furthermore, the modular
data types in these languages are not expressive enough to cap-
ture the modular interpreters discussed in Chapter 2. This would
require the design of a meta language with built-in support for
modular indexed data types.

6.4 future work

This thesis presented contributions towards making formally
verified language components more accessible, with the goal of
making formally specified and verified programming languages
attainable for a broader audience of language engineers. To get
there, however, there are still some challenges that need to ad-
dressed.

6.4.1 Modular semantics

When revisiting the first hypothesis in Section 6.2, we already
hinted at the open challenges when it comes to using intrinsically-
typed definitional interpreters to specify verified and reusable
programming language components. In particular, we would
need to improve the expressivity of the approach by further

[February 18, 2025 at 13:46 – version 4.2]

212 conclusions

generalizing both the notion of typing as well as the semantic
domain of language fragments.

To generalize the notion of typing permitted, generalizations of
effect systems such as the one by Mycroft et al. [2016] seem like
a good starting point. This would, however, require us to further
the state-of-the-art in intrinsically-typed definitional interpreters
to this class of typings, before we can think about extending
the definition of language fragments accordingly. Furthermore,
this induces the question of how to compose fragments that use
different typing. While it is conceivable that we could leverage
similar separation and inclusion predicates as we used to capture
assumptions about canonicity to phrase a fragment’s typing in
terms of assumptions (rather than fixing it upfront), we have yet
to explore this direction.

Wile the above concerns static effects, similar modularity con-
cerns arise when considering dynamic effects. To give a semantics
to languages with polymorphic references, for example, we de-
note into a category of monotone predicates over the memory
state. Other language fragments, however, may maintain different
invariants, and it is still an open question how we would mediate
the different requirements on the semantic domain imposed by
such fragments.

The setup in Section 2.5 already hints at a possible solution
direction for this problem by factoring all effects into a monadic
interface. Behind the scenes, for the languages that have polymor-
phic references, this monad is implemented by constructing an
inductively-defined free monad in a category of monotone pred-
icates. Similarly, the intrinsically-typed interpreter for session-
typed �-calculus by Rouvoet et al. [2020] relies on a inductively
defined free monad in the category of predicates over (runtime)
session types. Finding a general and modular type of command
tree [Hancock and Setzer, 2000] that subsumes these and other
intrinsically-typed dynamic effects would be a crucial step in
achieving a modular treatment of effects.

[February 18, 2025 at 13:46 – version 4.2]

6.4 future work 213

6.4.2 Meta Language Design

When it comes to meta language design, the languages presented
in Chapter 4 and Chapter 5 occupy two very different points in
the design space. Where the former works backwards from the
programmer’s perspective and focusses more on usability, the
second puts more emphasis on mathematical rigor and a formal
specification. This leaves use with a clear goal of combining these
two different perspectives in a single language design. We could
get there by adding a formal specification of a type system to
the language presented in Chapter 4, or alternatively define a
desugaring into the calculus presented in Chapter 5.

Beyond that, when it comes to usability there are more lan-
guage features we could consider adding which do not currently
appear in either language. For example, functor subtyping or row
typing are obvious candidate features that would improve usabil-
ity.

6.4.3 Connecting the Dots

Aside from the work that is still to be done on the individual
parts, we may look ahead and think about how to connect the
contributions of the two parts in this thesis. After all, Chapters 2
and 3 are concerned with developing the semantic tools necessary
to describe reusable language components as intrinsically-typed
definitional interpreters, whereas Chapters 4 and 5 investigate
the design of meta languages that support the modular definition
of untyped definitional interpreters.

The vision that connects these lines of work is to develop a
dedicated meta language for developing reusable programming
language components by writing intrinsically-typed definitional
interpreters. Such a language would allow us write intrinsically-
typed definitional interpreters much like we write them in Agda
today, but with the key difference that they are modular and
composable. Before we are ready to embark on designing such
a language, however, we must have a solid understanding of
the semantics of composing intrinsically-typed definitional inter-

[February 18, 2025 at 13:46 – version 4.2]

214 conclusions

preters, as well as how to incorporate modularity for data types
and their operations in a language’s design and type system. In
this thesis, we have laid the necessary foundation, meaning that
the time is ripe to start working towards making this vision a
reality.

[February 18, 2025 at 13:46 – version 4.2]

A P P E N D I X

215

[February 18, 2025 at 13:46 – version 4.2]

[February 18, 2025 at 13:46 – version 4.2]

B I B L I O G R A P H Y

Michael Gordon Abbott, Thorsten Altenkirch, and Neil Ghani.
Categories of containers. In Andrew D. Gordon, editor, Foun-
dations of Software Science and Computational Structures, 6th In-
ternational Conference, FOSSACS 2003 Held as Part of the Joint
European Conference on Theory and Practice of Software, ETAPS
2003, Warsaw, Poland, April 7-11, 2003, Proceedings, volume 2620
of Lecture Notes in Computer Science, pages 23–38. Springer, 2003.
URL https://doi.org/10.1007/3-540-36576-1_2.

Michael Gordon Abbott, Thorsten Altenkirch, and Neil Ghani.
Containers: Constructing strictly positive types. Theor. Comput.
Sci., 342(1):3–27, 2005a. URL https://doi.org/10.1016/j.tcs.

2005.06.002.

Michael Gordon Abbott, Thorsten Altenkirch, and Neil Ghani.
Containers: Constructing strictly positive types. Theor. Com-
put. Sci., 342(1):3–27, 2005b. URL https://doi.org/10.1016/

j.tcs.2005.06.002.

Andreas Abel and Ralph Matthes. (co-)iteration for higher-
order nested datatypes. In Herman Geuvers and Freek
Wiedijk, editors, Types for Proofs and Programs, Second Inter-
national Workshop, TYPES 2002, Berg en Dal, The Netherlands,
April 24-28, 2002, Selected Papers, volume 2646 of Lecture
Notes in Computer Science, pages 1–20. Springer, 2002. URL
https://doi.org/10.1007/3-540-39185-1_1.

Andreas Abel, Ralph Matthes, and Tarmo Uustalu. Generalized
iteration and coiteration for higher-order nested datatypes. In
Andrew D. Gordon, editor, Foundations of Software Science and
Computational Structures, 6th International Conference, FOSSACS
2003 Held as Part of the Joint European Conference on Theory and
Practice of Software, ETAPS 2003, Warsaw, Poland, April 7-11,
2003, Proceedings, volume 2620 of Lecture Notes in Computer

217

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1007/3-540-36576-1_2
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1016/j.tcs.2005.06.002
https://doi.org/10.1007/3-540-39185-1_1

218 bibliography

Science, pages 54–69. Springer, 2003. URL https://doi.org/

10.1007/3-540-36576-1_4.

Andreas Abel, Ralph Matthes, and Tarmo Uustalu. Iteration
and coiteration schemes for higher-order and nested datatypes.
Theor. Comput. Sci., 333(1-2):3–66, 2005. URL https://doi.org/

10.1016/j.tcs.2004.10.017.

Jiří Adámek. Free algebras and automata realizations in the lan-
guage of categories. Commentationes Mathematicae Universitatis
Carolinae, 15(4):589–602, 1974.

Amal J. Ahmed, Andrew W. Appel, and Roberto Virga. A strat-
ified semantics of general references A stratified semantics
of general references. In 17th IEEE Symposium on Logic in
Computer Science (LICS 2002), 22-25 July 2002, Copenhagen, Den-
mark, Proceedings, page 75. IEEE Computer Society, 2002. URL
https://doi.org/10.1109/LICS.2002.1029818.

Amal Jamil Ahmed. Semantics of Types for Mutable State. PhD
thesis, USA, 2004. AAI3136691.

Guillaume Allais, Robert Atkey, James Chapman, Conor McBride,
and James McKinna. A type and scope safe universe of
syntaxes with binding: their semantics and proofs. Proc.
ACM Program. Lang., 2(ICFP):90:1–90:30, 2018. URL https:

//doi.org/10.1145/3236785.

Guillaume Allais, Robert Atkey, James Chapman, Conor McBride,
and James McKinna. A type- and scope-safe universe
of syntaxes with binding: their semantics and proofs. J.
Funct. Program., 31:e22, 2021. URL https://doi.org/10.1017/

S0956796820000076.

Thorsten Altenkirch and Ambrus Kaposi. Type theory in type
theory using quotient inductive types. In Rastislav Bodík and
Rupak Majumdar, editors, Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22, 2016,
pages 18–29. ACM, 2016. doi: 10.1145/2837614.2837638. URL
https://doi.org/10.1145/2837614.2837638.

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1007/3-540-36576-1_4
https://doi.org/10.1007/3-540-36576-1_4
https://doi.org/10.1016/j.tcs.2004.10.017
https://doi.org/10.1016/j.tcs.2004.10.017
https://doi.org/10.1109/LICS.2002.1029818
https://doi.org/10.1145/3236785
https://doi.org/10.1145/3236785
https://doi.org/10.1017/S0956796820000076
https://doi.org/10.1017/S0956796820000076
https://doi.org/10.1145/2837614.2837638

bibliography 219

Thorsten Altenkirch, Neil Ghani, Peter G. Hancock, Conor
McBride, and Peter Morris. Indexed containers. J.
Funct. Program., 25, 2015. URL https://doi.org/10.1017/

S095679681500009X.

Nada Amin and Tiark Rompf. Type soundness proofs with def-
initional interpreters. In Giuseppe Castagna and Andrew D.
Gordon, editors, Proceedings of the 44th ACM SIGPLAN Sympo-
sium on Principles of Programming Languages, POPL 2017, Paris,
France, January 18-20, 2017, pages 666–679. ACM, 2017. URL
https://doi.org/10.1145/3009837.3009866.

Michael A. Arbib and Ernest G. Manes. Arrows, Structures, and
Functors: The Categorical Imperative. Academic Press, 1975.

Robert Atkey. Syntax and semantics of quantitative type theory.
In Anuj Dawar and Erich Grädel, editors, Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2018, Oxford, UK, July 09-12, 2018, pages 56–65. ACM,
2018. URL https://doi.org/10.1145/3209108.3209189.

Lennart Augustsson and Magnus Carlsson. An exercise in de-
pendent types: A well-typed interpreter. In In Workshop on
Dependent Types in Programming, Gothenburg, 1999.

Steve Awodey. Category Theory. Oxford Logic Guides. Oxford
University Press, Oxford, New York, second edition, second
edition edition, June 2010. ISBN 978-0-19-923718-0.

Brian E. Aydemir, Aaron Bohannon, Matthew Fairbairn, J. Nathan
Foster, Benjamin C. Pierce, Peter Sewell, Dimitrios Vytiniotis,
Geoffrey Washburn, Stephanie Weirich, and Steve Zdancewic.
Mechanized metatheory for the masses: The poplmark chal-
lenge. In Joe Hurd and Thomas F. Melham, editors, Theorem
Proving in Higher Order Logics, 18th International Conference,
TPHOLs 2005, Oxford, UK, August 22-25, 2005, Proceedings, vol-
ume 3603 of Lecture Notes in Computer Science, pages 50–65.
Springer, 2005. URL https://doi.org/10.1007/11541868_4.

Casper Bach Poulsen and Cas van der Rest. Hefty algebras:
Modular elaboration of higher-order algebraic effects. Proc.

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1017/S095679681500009X
https://doi.org/10.1145/3009837.3009866
https://doi.org/10.1145/3209108.3209189
https://doi.org/10.1007/11541868_4

220 bibliography

ACM Program. Lang., 7(POPL):1801–1831, 2023. URL https:

//doi.org/10.1145/3571255.

Casper Bach Poulsen, Arjen Rouvoet, Andrew Tolmach, Robbert
Krebbers, and Eelco Visser. Intrinsically-typed definitional
interpreters for imperative languages. Proc. ACM Program.
Lang., 2(POPL):16:1–16:34, 2018. URL https://doi.org/10.

1145/3158104.

Casper Bach Poulsen, Cas van der Rest, and Tom Schrijvers.
Staged effects and handlers for modular languages with ab-
straction. In Workshop on Partial Evaluation and Program Manipu-
lation (PEPM). http://casperbp. net/store/staged-effects-and-handlers.
pdf, 2021.

Patrick Bahr. Composing and decomposing data types: a closed
type families implementation of data types à la carte. In
José Pedro Magalhães and Tiark Rompf, editors, Proceedings of
the 10th ACM SIGPLAN workshop on Generic programming, WGP
2014, Gothenburg, Sweden, August 31, 2014, pages 71–82. ACM,
2014. URL https://doi.org/10.1145/2633628.2633635.

Patrick Bahr and Tom Hvitved. Compositional data types.
In Jaakko Järvi and Shin-Cheng Mu, editors, Proceedings of
the seventh ACM SIGPLAN workshop on Generic programming,
WGP@ICFP 2011, Tokyo, Japan, September 19-21, 2011, pages
83–94. ACM, 2011. URL https://doi.org/10.1145/2036918.

2036930.

Patrick Bahr and Tom Hvitved. Parametric compositional data
types. In James Chapman and Paul Blain Levy, editors, Pro-
ceedings Fourth Workshop on Mathematically Structured Func-
tional Programming, MSFP@ETAPS 2012, Tallinn, Estonia, 25
March 2012, volume 76 of EPTCS, pages 3–24, 2012a. URL
https://doi.org/10.4204/EPTCS.76.3.

Patrick Bahr and Tom Hvitved. Parametric compositional data
types. In James Chapman and Paul Blain Levy, editors, Pro-
ceedings Fourth Workshop on Mathematically Structured Func-
tional Programming, MSFP@ETAPS 2012, Tallinn, Estonia, 25

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1145/3571255
https://doi.org/10.1145/3571255
https://doi.org/10.1145/3158104
https://doi.org/10.1145/3158104
https://doi.org/10.1145/2633628.2633635
https://doi.org/10.1145/2036918.2036930
https://doi.org/10.1145/2036918.2036930
https://doi.org/10.4204/EPTCS.76.3

bibliography 221

March 2012, volume 76 of EPTCS, pages 3–24, 2012b. URL
https://doi.org/10.4204/EPTCS.76.3.

Andrej Bauer and Matija Pretnar. An effect system for algebraic
effects and handlers. Log. Methods Comput. Sci., 10(4), 2014.
URL https://doi.org/10.2168/LMCS-10(4:9)2014.

Andrej Bauer and Matija Pretnar. Programming with algebraic
effects and handlers. J. Log. Algebraic Methods Program., 84(1):
108–123, 2015. URL https://doi.org/10.1016/j.jlamp.2014.

02.001.

Marcin Benke, Peter Dybjer, and Patrik Jansson. Universes for
generic programs and proofs in dependent type theory. Nord.
J. Comput., 10(4):265–289, 2003.

Birthe van den Berg and Tom Schrijvers. A framework for higher-
order effects & handlers. CoRR, abs/2302.01415, 2023. URL
https://doi.org/10.48550/arXiv.2302.01415.

Birthe van den Berg, Tom Schrijvers, Casper Bach Poulsen, and
Nicolas Wu. Latent effects for reusable language components.
In Hakjoo Oh, editor, Programming Languages and Systems - 19th
Asian Symposium, APLAS 2021, Chicago, IL, USA, October 17-18,
2021, Proceedings, volume 13008 of Lecture Notes in Computer
Science, pages 182–201. Springer, 2021a. URL https://doi.

org/10.1007/978-3-030-89051-3_11.

Birthe van den Berg, Tom Schrijvers, Casper Bach Poulsen, and
Nicolas Wu. Latent effects for reusable language components:
Extended version. CoRR, abs/2108.11155, 2021b. URL https:

//arxiv.org/abs/2108.11155.

Dariusz Biernacki, Maciej Piróg, Piotr Polesiuk, and Filip
Sieczkowski. Handle with care: relational interpretation of alge-
braic effects and handlers. Proc. ACM Program. Lang., 2(POPL):
8:1–8:30, 2018. URL https://doi.org/10.1145/3158096.

Richard S. Bird and Lambert G. L. T. Meertens. Nested datatypes.
In Johan Jeuring, editor, Mathematics of Program Construction,

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.4204/EPTCS.76.3
https://doi.org/10.2168/LMCS-10(4:9)2014
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.1016/j.jlamp.2014.02.001
https://doi.org/10.48550/arXiv.2302.01415
https://doi.org/10.1007/978-3-030-89051-3_11
https://doi.org/10.1007/978-3-030-89051-3_11
https://arxiv.org/abs/2108.11155
https://arxiv.org/abs/2108.11155
https://doi.org/10.1145/3158096

222 bibliography

MPC’98, Marstrand, Sweden, June 15-17, 1998, Proceedings, vol-
ume 1422 of Lecture Notes in Computer Science, pages 52–67.
Springer, 1998. URL https://doi.org/10.1007/BFb0054285.

Richard S. Bird and Ross Paterson. Generalised folds for nested
datatypes. Formal Aspects Comput., 11(2):200–222, 1999. URL
https://doi.org/10.1007/s001650050047.

Matthias Blume, Umut A. Acar, and Wonseok Chae. Extensi-
ble programming with first-class cases. In John H. Reppy
and Julia L. Lawall, editors, Proceedings of the 11th ACM SIG-
PLAN International Conference on Functional Programming, ICFP
2006, Portland, Oregon, USA, September 16-21, 2006, pages 239–
250. ACM, 2006. URL https://doi.org/10.1145/1159803.

1159836.

Jonathan Immanuel Brachthäuser, Philipp Schuster, and Klaus Os-
termann. Effects as capabilities: effect handlers and lightweight
effect polymorphism. Proc. ACM Program. Lang., 4(OOPSLA):
126:1–126:30, 2020. URL https://doi.org/10.1145/3428194.

Edwin C. Brady. Programming and reasoning with algebraic
effects and dependent types. In ACM SIGPLAN International
Conference on Functional Programming, ICFP’13, Boston, MA, USA
- September 25 - 27, 2013, pages 133–144, 2013a. URL https:

//doi.org/10.1145/2500365.2500581.

Edwin C. Brady. Idris, a general-purpose dependently typed pro-
gramming language: Design and implementation. J. Funct. Pro-
gram., 23(5):552–593, 2013b. URL https://doi.org/10.1017/

S095679681300018X.

Yufei Cai, Paolo G. Giarrusso, and Klaus Ostermann. System
f-omega with equirecursive types for datatype-generic pro-
gramming. In Rastislav Bodík and Rupak Majumdar, edi-
tors, Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL 2016,
St. Petersburg, FL, USA, January 20 - 22, 2016, pages 30–43.
ACM, 2016. doi: 10.1145/2837614.2837660. URL https:

//doi.org/10.1145/2837614.2837660.

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1007/BFb0054285
https://doi.org/10.1007/s001650050047
https://doi.org/10.1145/1159803.1159836
https://doi.org/10.1145/1159803.1159836
https://doi.org/10.1145/3428194
https://doi.org/10.1145/2500365.2500581
https://doi.org/10.1145/2500365.2500581
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1145/2837614.2837660
https://doi.org/10.1145/2837614.2837660

bibliography 223

Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally
tagless, partially evaluated: Tagless staged interpreters for sim-
pler typed languages. J. Funct. Program., 19(5):509–543, 2009a.
URL https://doi.org/10.1017/S0956796809007205.

Jacques Carette, Oleg Kiselyov, and Chung-chieh Shan. Finally
tagless, partially evaluated: Tagless staged interpreters for sim-
pler typed languages. J. Funct. Program., 19(5):509–543, 2009b.
URL https://doi.org/10.1017/S0956796809007205.

Pietro Cenciarelli and Eugenio Moggi. A syntactic approach to
modularity in denotational semantics. 1993.

James Chapman, Pierre-Évariste Dagand, Conor McBride, and
Peter Morris. The gentle art of levitation. In Paul Hudak
and Stephanie Weirich, editors, Proceeding of the 15th ACM
SIGPLAN international conference on Functional programming,
ICFP 2010, Baltimore, Maryland, USA, September 27-29, 2010,
pages 3–14. ACM, 2010a. ISBN 978-1-60558-794-3. URL https:

//doi.org/10.1145/1863543.1863547.

James Chapman, Pierre-Évariste Dagand, Conor McBride, and
Peter Morris. The gentle art of levitation. In Paul Hudak
and Stephanie Weirich, editors, Proceeding of the 15th ACM
SIGPLAN international conference on Functional programming,
ICFP 2010, Baltimore, Maryland, USA, September 27-29, 2010,
pages 3–14. ACM, 2010b. ISBN 978-1-60558-794-3. URL https:

//doi.org/10.1145/1863543.1863547.

James Chapman, Roman Kireev, Chad Nester, and Philip Wadler.
System F in agda, for fun and profit. In Graham Hutton, editor,
Mathematics of Program Construction - 13th International Confer-
ence, MPC 2019, Porto, Portugal, October 7-9, 2019, Proceedings,
volume 11825 of Lecture Notes in Computer Science, pages 255–
297. Springer, 2019. doi: 10.1007/978-3-030-33636-3_10. URL
https://doi.org/10.1007/978-3-030-33636-3_10.

Adam Chlipala. Parametric higher-order abstract syntax for
mechanized semantics. In James Hook and Peter Thiemann,
editors, Proceeding of the 13th ACM SIGPLAN international

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1017/S0956796809007205
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1145/1863543.1863547
https://doi.org/10.1007/978-3-030-33636-3_10

224 bibliography

conference on Functional programming, ICFP 2008, Victoria, BC,
Canada, September 20-28, 2008, pages 143–156. ACM, 2008. URL
https://doi.org/10.1145/1411204.1411226.

Martin Churchill and Peter D. Mosses. Modular bisimulation
theory for computations and values. In Frank Pfenning, editor,
FOSSACS 2013, volume 7794 of LNCS, pages 97–112. Springer,
2013.

Martin Churchill, Peter D. Mosses, Neil Sculthorpe, and Paolo
Torrini. Reusable components of semantic specifications. LNCS
Trans. Aspect Oriented Softw. Dev., 12:132–179, 2015.

Matteo Cimini, Dale Miller, and Jeremy G. Siek. Extrinsically
typed operational semantics for functional languages. In Ralf
Lämmel, Laurence Tratt, and Juan de Lara, editors, Proceedings
of the 13th ACM SIGPLAN International Conference on Software
Language Engineering, SLE 2020, Virtual Event, USA, November
16-17, 2020, pages 108–125. ACM, 2020. URL https://doi.

org/10.1145/3426425.3426936.

Koen Claessen. A poor man’s concurrency monad. J. Funct.
Program., 9(3):313–323, 1999. URL https://doi.org/10.1017/

s0956796899003342.

Jesper Cockx. Dependent pattern matching and proof-relevant
unification. 2017. URL https://lirias.kuleuven.be/handle/

123456789/583556.

Lukas Convent, Sam Lindley, Conor McBride, and Craig
McLaughlin. Doo bee doo bee doo. J. Funct. Program., 30:e9,
2020. URL https://doi.org/10.1017/S0956796820000039.

Thierry Coquand. Pattern matching with dependent types. In
Proceedings of the Workshop on Types for Proofs and Programs,
pages 71–83. Citeseer, 1992.

Thierry Coquand and Christine Paulin. Inductively defined types.
In Per Martin-Löf and Grigori Mints, editors, COLOG-88, Inter-
national Conference on Computer Logic, Tallinn, USSR, December

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1145/3426425.3426936
https://doi.org/10.1145/3426425.3426936
https://doi.org/10.1017/s0956796899003342
https://doi.org/10.1017/s0956796899003342
https://lirias.kuleuven.be/handle/123456789/583556
https://lirias.kuleuven.be/handle/123456789/583556
https://doi.org/10.1017/S0956796820000039

bibliography 225

1988, Proceedings, volume 417 of Lecture Notes in Computer Sci-
ence, pages 50–66. Springer, 1988. ISBN 3-540-52335-9. URL
https://doi.org/10.1007/3-540-52335-9_47.

Bruno C. d. S. Oliveira and William R. Cook. Extensibility for the
masses - practical extensibility with object algebras. In James
Noble, editor, ECOOP 2012 - Object-Oriented Programming - 26th
European Conference, Beijing, China, June 11-16, 2012. Proceedings,
volume 7313 of Lecture Notes in Computer Science, pages 2–27.
Springer, 2012. ISBN 978-3-642-31056-0. URL https://doi.

org/10.1007/978-3-642-31057-7_2.

Bruno C. d. S. Oliveira, Shin-Cheng Mu, and Shu-Hung You.
Modular reifiable matching: a list-of-functors approach to two-
level types. In Ben Lippmeier, editor, Proceedings of the 8th
ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver,
BC, Canada, September 3-4, 2015, pages 82–93. ACM, 2015. URL
https://doi.org/10.1145/2804302.2804315.

Pierre-Évariste Dagand. A cosmology of datatypes : reusability and
dependent types. PhD thesis, University of Strathclyde, Glasgow,
UK, 2013a. URL http://oleg.lib.strath.ac.uk/R/?func=

dbin-jump-full&object_id=22713.

Pierre-Évariste Dagand. A cosmology of datatypes : reusability and
dependent types. PhD thesis, University of Strathclyde, Glasgow,
UK, 2013b. URL http://oleg.lib.strath.ac.uk/R/?func=

dbin-jump-full&object_id=22713.

Pierre-Évariste Dagand. The essence of ornaments. J.
Funct. Program., 27:e9, 2017. URL https://doi.org/10.1017/

S0956796816000356.

Pierre-Évariste Dagand and Conor McBride. Transporting func-
tions across ornaments. J. Funct. Program., 24(2-3):316–383, 2014.
URL https://doi.org/10.1017/S0956796814000069.

Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers.
Meta-theory à la carte. In Roberto Giacobazzi and Radhia
Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’13, Rome,

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1007/3-540-52335-9_47
https://doi.org/10.1007/978-3-642-31057-7_2
https://doi.org/10.1007/978-3-642-31057-7_2
https://doi.org/10.1145/2804302.2804315
http://oleg.lib.strath.ac.uk/R/?func=dbin-jump-full&object_id=22713
http://oleg.lib.strath.ac.uk/R/?func=dbin-jump-full&object_id=22713
http://oleg.lib.strath.ac.uk/R/?func=dbin-jump-full&object_id=22713
http://oleg.lib.strath.ac.uk/R/?func=dbin-jump-full&object_id=22713
https://doi.org/10.1017/S0956796816000356
https://doi.org/10.1017/S0956796816000356
https://doi.org/10.1017/S0956796814000069

226 bibliography

Italy - January 23 - 25, 2013, pages 207–218. ACM, 2013a. URL
https://doi.org/10.1145/2429069.2429094.

Benjamin Delaware, Bruno C. d. S. Oliveira, and Tom Schrijvers.
Meta-theory à la carte. In Roberto Giacobazzi and Radhia
Cousot, editors, The 40th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages, POPL ’13, Rome,
Italy - January 23 - 25, 2013, pages 207–218. ACM, 2013b. URL
https://doi.org/10.1145/2429069.2429094.

Benjamin Delaware, Steven Keuchel, Tom Schrijvers, and Bruno C.
d. S. Oliveira. Modular monadic meta-theory. pages 319–330,
2013c. URL https://doi.org/10.1145/2500365.2500587.

Marco Devesas Campos and Paul Blain Levy. A syntactic view
of computational adequacy. In Christel Baier and Ugo Dal
Lago, editors, Foundations of Software Science and Computation
Structures - 21st International Conference, FOSSACS 2018, Held
as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018,
Proceedings, volume 10803 of Lecture Notes in Computer Science,
pages 71–87. Springer, 2018. ISBN 978-3-319-89365-5. URL
https://doi.org/10.1007/978-3-319-89366-2_4.

Dominique Devriese and Frank Piessens. On the bright side of
type classes: instance arguments in agda. In ACM SIGPLAN
international conference on Functional Programming (ICFP), pages
143–155, 2011.

Matthias Felleisen and Robert Hieb. The revised report on the
syntactic theories of sequential control and state. Theor. Comput.
Sci., 103(2):235–271, 1992. URL https://doi.org/10.1016/

0304-3975(92)90014-7.

Andrzej Filinski. Representing layered monads. In POPL ’99,
Proceedings of the 26th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, San Antonio, TX, USA,
January 20-22, 1999, pages 175–188, 1999. URL https://doi.

org/10.1145/292540.292557.

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1145/2429069.2429094
https://doi.org/10.1145/2429069.2429094
https://doi.org/10.1145/2500365.2500587
https://doi.org/10.1007/978-3-319-89366-2_4
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1016/0304-3975(92)90014-7
https://doi.org/10.1145/292540.292557
https://doi.org/10.1145/292540.292557

bibliography 227

Marcelo P. Fiore and Sam Staton. Substitution, jumps, and al-
gebraic effects. In Joint Meeting of the Twenty-Third EACSL
Annual Conference on Computer Science Logic (CSL) and the
Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS), CSL-LICS ’14, Vienna, Austria, July 14 - 18,
2014, pages 41:1–41:10, 2014. URL https://doi.org/10.1145/

2603088.2603163.

Benedict R Gaster and Mark P Jones. A polymorphic type system
for extensible records and variants. Technical report, Citeseer,
1996.

Johan Glimming and Neil Ghani. Difunctorial semantics of
object calculus. In Viviana Bono, Michele Bugliesi, and Sophia
Drossopoulou, editors, Proceedings of the Second Workshop on
Object Oriented Developments, WOOD 2004, London, UK, August
30, 2004, volume 138 of Electronic Notes in Theoretical Computer
Science, pages 79–94. Elsevier, 2004. URL https://doi.org/10.

1016/j.entcs.2005.09.012.

Joseph A Goguen. An intial algebra approach to the specification,
correctness and implementation of abstract data types. IBM
Research Report, 6487, 1976.

Peter G. Hancock and Anton Setzer. Interactive programs in
dependent type theory. In Peter Clote and Helmut Schwicht-
enberg, editors, Computer Science Logic, 14th Annual Confer-
ence of the EACSL, Fischbachau, Germany, August 21-26, 2000,
Proceedings, volume 1862 of Lecture Notes in Computer Sci-
ence, pages 317–331. Springer, 2000. URL https://doi.org/10.

1007/3-540-44622-2_21.

Robert Harper. A simplified account of polymorphic references.
Inf. Process. Lett., 51(4):201–206, 1994.

C. A. R. Hoare. An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580, 1969. URL https://doi.org/

10.1145/363235.363259.

Kohei Honda, Vasco Thudichum Vasconcelos, and Makoto
Kubo. Language primitives and type discipline for structured

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1145/2603088.2603163
https://doi.org/10.1145/2603088.2603163
https://doi.org/10.1016/j.entcs.2005.09.012
https://doi.org/10.1016/j.entcs.2005.09.012
https://doi.org/10.1007/3-540-44622-2_21
https://doi.org/10.1007/3-540-44622-2_21
https://doi.org/10.1145/363235.363259
https://doi.org/10.1145/363235.363259

228 bibliography

communication-based programming. In Chris Hankin, editor,
Programming Languages and Systems - ESOP’98, 7th European
Symposium on Programming, Held as Part of the European Joint
Conferences on the Theory and Practice of Software, ETAPS’98, Lis-
bon, Portugal, March 28 - April 4, 1998, Proceedings, volume 1381
of Lecture Notes in Computer Science, pages 122–138. Springer,
1998. URL https://doi.org/10.1007/BFb0053567.

Alex Hubers and J. Garrett Morris. Generic programming with
extensible data types: Or, making ad hoc extensible data types
less ad hoc. Proc. ACM Program. Lang., 7(ICFP), aug 2023. URL
https://doi.org/10.1145/3607843.

Paul Hudak, Simon L. Peyton Jones, Philip Wadler, Brian Boutel,
Jon Fairbairn, Joseph H. Fasel, María M. Guzmán, Kevin Ham-
mond, John Hughes, Thomas Johnsson, Richard B. Kieburtz,
Rishiyur S. Nikhil, Will Partain, and John Peterson. Report
on the programming language haskell, A non-strict, purely
functional language. ACM SIGPLAN Notices, 27(5):1, 1992. URL
https://doi.org/10.1145/130697.130699.

Martin Hyland, Gordon D. Plotkin, and John Power. Combining
effects: Sum and tensor. Theor. Comput. Sci., 357(1-3):70–99,
2006. URL https://doi.org/10.1016/j.tcs.2006.03.013.

Mauro Jaskelioff. Monatron: An extensible monad transformer
library. In Implementation and Application of Functional Languages
- 20th International Symposium, IFL 2008, Hatfield, UK, September
10-12, 2008. Revised Selected Papers, pages 233–248, 2008. URL
https://doi.org/10.1007/978-3-642-24452-0_13.

Johan Jeuring and Erik Meijer, editors. Advanced Functional Pro-
gramming, First International Spring School on Advanced Func-
tional Programming Techniques, Båstad, Sweden, May 24-30, 1995,
Tutorial Text, volume 925 of Lecture Notes in Computer Science,
1995. Springer. ISBN 3-540-59451-5. URL https://doi.org/10.

1007/3-540-59451-5.

Patricia Johann and Neil Ghani. Initial algebra semantics is
enough! In Simona Ronchi Della Rocca, editor, Typed Lambda

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1007/BFb0053567
https://doi.org/10.1145/3607843
https://doi.org/10.1145/130697.130699
https://doi.org/10.1016/j.tcs.2006.03.013
https://doi.org/10.1007/978-3-642-24452-0_13
https://doi.org/10.1007/3-540-59451-5
https://doi.org/10.1007/3-540-59451-5

bibliography 229

Calculi and Applications, 8th International Conference, TLCA 2007,
Paris, France, June 26-28, 2007, Proceedings, volume 4583 of Lec-
ture Notes in Computer Science, pages 207–222. Springer, 2007.
URL https://doi.org/10.1007/978-3-540-73228-0_16.

Patricia Johann and Enrico Ghiorzi. Parametricity for nested
types and gadts. Log. Methods Comput. Sci., 17(4), 2021. URL
https://doi.org/10.46298/lmcs-17(4:23)2021.

Patricia Johann and Andrew Polonsky. Higher-kinded data types:
Syntax and semantics. In 34th Annual ACM/IEEE Symposium
on Logic in Computer Science, LICS 2019, Vancouver, BC, Canada,
June 24-27, 2019, pages 1–13. IEEE, 2019. URL https://doi.

org/10.1109/LICS.2019.8785657.

Patricia Johann, Enrico Ghiorzi, and Daniel Jeffries. Parametricity
for primitive nested types. In Stefan Kiefer and Christine
Tasson, editors, Foundations of Software Science and Computation
Structures - 24th International Conference, FOSSACS 2021, Held
as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2021, Luxembourg City, Luxembourg, March
27 - April 1, 2021, Proceedings, volume 12650 of Lecture Notes in
Computer Science, pages 324–343. Springer, 2021. URL https:

//doi.org/10.1007/978-3-030-71995-1_17.

Thomas Johnsson. Attribute grammars as a functional program-
ming paradigm. In Gilles Kahn, editor, Functional Program-
ming Languages and Computer Architecture, Portland, Oregon,
USA, September 14-16, 1987, Proceedings, volume 274 of Lecture
Notes in Computer Science, pages 154–173. Springer, 1987. URL
https://doi.org/10.1007/3-540-18317-5_10.

Mark P. Jones. Functional programming with overloading and
higher-order polymorphism. In Jeuring and Meijer [1995],
pages 97–136. ISBN 3-540-59451-5. URL https://doi.org/10.

1007/3-540-59451-5_4.

Mark P. Jones and Luc Duponcheel. Composing monads. Re-
search Report YALEU/DCS/RR-1004, Yale University, New

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1007/978-3-540-73228-0_16
https://doi.org/10.46298/lmcs-17(4:23)2021
https://doi.org/10.1109/LICS.2019.8785657
https://doi.org/10.1109/LICS.2019.8785657
https://doi.org/10.1007/978-3-030-71995-1_17
https://doi.org/10.1007/978-3-030-71995-1_17
https://doi.org/10.1007/3-540-18317-5_10
https://doi.org/10.1007/3-540-59451-5_4
https://doi.org/10.1007/3-540-59451-5_4

230 bibliography

Haven, Connecticut, USA, December 1993. URL http://web.

cecs.pdx.edu/~mpj/pubs/RR-1004.pdf.

Guy L. Steele Jr. Building interpreters by composing monads.
In Hans-Juergen Boehm, Bernard Lang, and Daniel M. Yellin,
editors, Conference Record of POPL’94: 21st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages,
Portland, Oregon, USA, January 17-21, 1994, pages 472–492. ACM
Press, 1994. URL https://doi.org/10.1145/174675.178068.

Ohad Kammar, Sam Lindley, and Nicolas Oury. Handlers in
action. In Greg Morrisett and Tarmo Uustalu, editors, ACM
SIGPLAN International Conference on Functional Programming,
ICFP’13, Boston, MA, USA - September 25 - 27, 2013, pages 145–
158. ACM, 2013. URL https://doi.org/10.1145/2500365.

2500590.

Steven Keuchel and Tom Schrijvers. Generic datatypes à la carte.
In Jacques Carette and Jeremiah Willcock, editors, Proceedings of
the 9th ACM SIGPLAN workshop on Generic programming, WGP
2013, Boston, Massachusetts, USA, September 28, 2013, pages
13–24. ACM, 2013. URL https://doi.org/10.1145/2502488.

2502491.

Richard B. Kieburtz and Jeffrey Lewis. Programming with alge-
bras. In Jeuring and Meijer [1995], pages 267–307. ISBN 3-540-
59451-5. URL https://doi.org/10.1007/3-540-59451-5_8.

Oleg Kiselyov. Typed tagless final interpreters. In Jeremy Gib-
bons, editor, Generic and Indexed Programming - International
Spring School, SSGIP 2010, Oxford, UK, March 22-26, 2010, Re-
vised Lectures, volume 7470 of Lecture Notes in Computer Science,
pages 130–174. Springer, 2010. ISBN 978-3-642-32201-3. URL
https://doi.org/10.1007/978-3-642-32202-0_3.

Oleg Kiselyov and Hiromi Ishii. Freer monads, more extensible
effects. In Ben Lippmeier, editor, Proceedings of the 8th ACM
SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC,
Canada, September 3-4, 2015, pages 94–105. ACM, 2015. URL
https://doi.org/10.1145/2804302.2804319.

[February 18, 2025 at 13:46 – version 4.2]

http://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf
http://web.cecs.pdx.edu/~mpj/pubs/RR-1004.pdf
https://doi.org/10.1145/174675.178068
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2502488.2502491
https://doi.org/10.1145/2502488.2502491
https://doi.org/10.1007/3-540-59451-5_8
https://doi.org/10.1007/978-3-642-32202-0_3
https://doi.org/10.1145/2804302.2804319

bibliography 231

Oleg Kiselyov, Amr Sabry, and Cameron Swords. Extensible
effects: an alternative to monad transformers. In Chung-chieh
Shan, editor, Proceedings of the 2013 ACM SIGPLAN Sympo-
sium on Haskell, Boston, MA, USA, September 23-24, 2013, pages
59–70. ACM, 2013. URL https://doi.org/10.1145/2503778.

2503791.

Donald E. Knuth. Literate programming, volume 27 of CSLI lecture
notes series. Center for the Study of Language and Information,
1992. ISBN 978-0-937073-81-0.

Hsiang-Shang Ko and Jeremy Gibbons. Programming with
ornaments. J. Funct. Program., 27:e2, 2017. URL https:

//doi.org/10.1017/S0956796816000307.

Saul A Kripke. Semantical analysis of modal logic i normal
modal propositional calculi. Mathematical Logic Quarterly, 9
(5-6):67–96, 1963.

Ramana Kumar, Magnus O. Myreen, Michael Norrish, and
Scott Owens. Cakeml: a verified implementation of ML.
In Suresh Jagannathan and Peter Sewell, editors, The 41st
Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL ’14, San Diego, CA, USA, Jan-
uary 20-21, 2014, pages 179–192. ACM, 2014. URL https:

//doi.org/10.1145/2535838.2535841.

Daan Leijen. Type directed compilation of row-typed algebraic
effects. In Giuseppe Castagna and Andrew D. Gordon, editors,
Proceedings of the 44th ACM SIGPLAN Symposium on Principles of
Programming Languages, POPL 2017, Paris, France, January 18-20,
2017, pages 486–499. ACM, 2017. URL https://doi.org/10.

1145/3009837.3009872.

Xavier Leroy. Formal verification of a realistic compiler. Commun.
ACM, 52(7):107–115, 2009. URL https://doi.org/10.1145/

1538788.1538814.

Paul Blain Levy. Call-By-Push-Value: A Functional/Imperative Syn-
thesis, volume 2 of Semantics Structures in Computation. Springer,
2004. ISBN 1-4020-1730-8.

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1145/2503778.2503791
https://doi.org/10.1145/2503778.2503791
https://doi.org/10.1017/S0956796816000307
https://doi.org/10.1017/S0956796816000307
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/3009837.3009872
https://doi.org/10.1145/1538788.1538814
https://doi.org/10.1145/1538788.1538814

232 bibliography

Sheng Liang, Paul Hudak, and Mark P. Jones. Monad transform-
ers and modular interpreters. In Ron K. Cytron and Peter Lee,
editors, Conference Record of POPL’95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, San
Francisco, California, USA, January 23-25, 1995, pages 333–343.
ACM Press, 1995a. URL https://doi.org/10.1145/199448.

199528.

Sheng Liang, Paul Hudak, and Mark P. Jones. Monad trans-
formers and modular interpreters. In Ron K. Cytron and
Peter Lee, editors, Conference Record of POPL’95: 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, San Francisco, California, USA, January 23-25, 1995,
pages 333–343. ACM Press, 1995b. ISBN 0-89791-692-1. URL
https://doi.org/10.1145/199448.199528.

Sam Lindley and James Cheney. Row-based effect types for
database integration. In Benjamin C. Pierce, editor, Proceedings
of TLDI 2012: The Seventh ACM SIGPLAN Workshop on Types
in Languages Design and Implementation, Philadelphia, PA, USA,
Saturday, January 28, 2012, pages 91–102. ACM, 2012. URL
https://doi.org/10.1145/2103786.2103798.

Saunders MacLane. Categories for the Working Mathematician.
Springer-Verlag, New York, 1971. Graduate Texts in Math-
ematics, Vol. 5.

Ken Madlener, Sjaak Smetsers, and Marko C. J. D. van Eekelen.
Formal component-based semantics. In Michel A. Reniers and
Pawel Sobocinski, editors, Proceedings Eight Workshop on Struc-
tural Operational Semantics 2011, SOS 2011, Aachen, Germany, 5th
September 2011, volume 62 of EPTCS, pages 17–29, 2011. URL
https://doi.org/10.4204/EPTCS.62.2.

Per Martin-Löf. Intuitionistic type theory, volume 1 of Studies in
proof theory. Bibliopolis, 1984. ISBN 978-88-7088-228-5.

Conor McBride. Ornamental algebras, algebraic ornaments. Un-
published manuscript, 2011.

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/199448.199528
https://doi.org/10.1145/2103786.2103798
https://doi.org/10.4204/EPTCS.62.2

bibliography 233

Lambert G. L. T. Meertens. Paramorphisms. Formal Aspects
Comput., 4(5):413–424, 1992. URL https://doi.org/10.1007/

BF01211391.

Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. Functional
programming with bananas, lenses, envelopes and barbed
wire. In John Hughes, editor, Functional Programming Languages
and Computer Architecture, 5th ACM Conference, Cambridge, MA,
USA, August 26-30, 1991, Proceedings, volume 523 of Lecture
Notes in Computer Science, pages 124–144. Springer, 1991. URL
https://doi.org/10.1007/3540543961_7.

Robin Milner. A theory of type polymorphism in programming.
J. Comput. Syst. Sci., 17(3):348–375, 1978. URL https://doi.

org/10.1016/0022-0000(78)90014-4.

Eugenio Moggi. Computational lambda-calculus and monads. In
Proceedings of the Fourth Annual Symposium on Logic in Computer
Science (LICS ’89), Pacific Grove, California, USA, June 5-8, 1989,
pages 14–23. IEEE Computer Society, 1989. URL https://doi.

org/10.1109/LICS.1989.39155.

Eugenio Moggi. An abstract view of programming lan-
guages. Technical Report ECS-LFCS-90-113, LFCS, University
of Edinburgh, 1990. URL http://www.disi.unige.it/person/

MoggiE/ftp/abs-view.ps.gz.

Eugenio Moggi. Notions of computation and monads. Inf.
Comput., 93(1):55–92, 1991. URL https://doi.org/10.1016/

0890-5401(91)90052-4.

J. Garrett Morris. Variations on variants. In Ben Lippmeier, editor,
Proceedings of the 8th ACM SIGPLAN Symposium on Haskell,
Haskell 2015, Vancouver, BC, Canada, September 3-4, 2015, pages
71–81. ACM, 2015. URL https://doi.org/10.1145/2804302.

2804320.

J. Garrett Morris and James McKinna. Abstracting extensible
data types: or, rows by any other name. Proc. ACM Program.
Lang., 3(POPL):12:1–12:28, 2019a. URL https://doi.org/10.

1145/3290325.

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1007/BF01211391
https://doi.org/10.1007/BF01211391
https://doi.org/10.1007/3540543961_7
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1109/LICS.1989.39155
https://doi.org/10.1109/LICS.1989.39155
http://www.disi.unige.it/person/MoggiE/ftp/abs-view.ps.gz
http://www.disi.unige.it/person/MoggiE/ftp/abs-view.ps.gz
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/2804302.2804320
https://doi.org/10.1145/2804302.2804320
https://doi.org/10.1145/3290325
https://doi.org/10.1145/3290325

234 bibliography

J. Garrett Morris and James McKinna. Abstracting extensible
data types: or, rows by any other name. Proc. ACM Program.
Lang., 3(POPL):12:1–12:28, 2019b. URL https://doi.org/10.

1145/3290325.

Peter D. Mosses. Modular structural operational semantics. J. Log.
Algebraic Methods Program., 60-61:195–228, 2004. URL https:

//doi.org/10.1016/j.jlap.2004.03.008.

Alan Mycroft, Dominic A. Orchard, and Tomas Petricek. Effect
systems revisited - control-flow algebra and semantics. In
Christian W. Probst, Chris Hankin, and René Rydhof Hansen,
editors, Semantics, Logics, and Calculi - Essays Dedicated to Hanne
Riis Nielson and Flemming Nielson on the Occasion of Their 60th
Birthdays, volume 9560 of Lecture Notes in Computer Science,
pages 1–32. Springer, 2016. ISBN 978-3-319-27809-4. URL
https://doi.org/10.1007/978-3-319-27810-0_1.

Flemming Nielson and Hanne Riis Nielson. Type and effect
systems. In Ernst-Rüdiger Olderog and Bernhard Steffen, ed-
itors, Correct System Design, Recent Insight and Advances, (to
Hans Langmaack on the occasion of his retirement from his pro-
fessorship at the University of Kiel), volume 1710 of Lecture
Notes in Computer Science, pages 114–136. Springer, 1999. URL
https://doi.org/10.1007/3-540-48092-7_6.

Ulf Norell. Dependently typed programming in agda. In
Pieter W. M. Koopman, Rinus Plasmeijer, and S. Doaitse Swier-
stra, editors, Advanced Functional Programming, 6th International
School, AFP 2008, Heijen, The Netherlands, May 2008, Revised
Lectures, volume 5832 of Lecture Notes in Computer Science,
pages 230–266. Springer, 2008. ISBN 978-3-642-04651-3. URL
https://doi.org/10.1007/978-3-642-04652-0_5.

Ulf Norell. Dependently typed programming in agda. In Andrew
Kennedy and Amal Ahmed, editors, Proceedings of TLDI’09:
2009 ACM SIGPLAN International Workshop on Types in Lan-
guages Design and Implementation, Savannah, GA, USA, January
24, 2009, pages 1–2. ACM, 2009. URL https://doi.org/10.

1145/1481861.1481862.

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1145/3290325
https://doi.org/10.1145/3290325
https://doi.org/10.1016/j.jlap.2004.03.008
https://doi.org/10.1016/j.jlap.2004.03.008
https://doi.org/10.1007/978-3-319-27810-0_1
https://doi.org/10.1007/3-540-48092-7_6
https://doi.org/10.1007/978-3-642-04652-0_5
https://doi.org/10.1145/1481861.1481862
https://doi.org/10.1145/1481861.1481862

bibliography 235

Scott Owens, Magnus O. Myreen, Ramana Kumar, and
Yong Kiam Tan. Functional big-step semantics. In Pe-
ter Thiemann, editor, Programming Languages and Systems -
25th European Symposium on Programming, ESOP 2016, Held
as Part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2016, Eindhoven, The Netherlands, April
2-8, 2016, Proceedings, volume 9632 of Lecture Notes in Com-
puter Science, pages 589–615. Springer, 2016. URL https:

//doi.org/10.1007/978-3-662-49498-1_23.

Lionel Parreaux, Aleksander Boruch-Gruszecki, and Paolo G.
Giarrusso. Towards improved GADT reasoning in scala.
In Jonathan Immanuel Brachthäuser, Sukyoung Ryu, and
Nathaniel Nystrom, editors, Proceedings of the Tenth ACM
SIGPLAN Symposium on Scala, Scala@ECOOP 2019, London,
UK, July 17, 2019, pages 12–16. ACM, 2019. URL https:

//doi.org/10.1145/3337932.3338813.

Frank Pfenning and Conal Elliott. Higher-order abstract syn-
tax. In Richard L. Wexelblat, editor, Proceedings of the ACM
SIGPLAN’88 Conference on Programming Language Design and
Implementation (PLDI), Atlanta, Georgia, USA, June 22-24, 1988,
pages 199–208. ACM, 1988. URL https://doi.org/10.1145/

53990.54010.

Benjamin C. Pierce. Basic category theory for computer scientists.
Foundations of computing. MIT Press, 1991. ISBN 978-0-262-
66071-6.

Benjamin C. Pierce. Types and programming languages. MIT Press,
2002. ISBN 978-0-262-16209-8.

Maciej Piróg and Jeremy Gibbons. The coinductive resump-
tion monad. In Bart Jacobs, Alexandra Silva, and Sam Staton,
editors, Proceedings of the 30th Conference on the Mathematical
Foundations of Programming Semantics, MFPS 2014, Ithaca, NY,
USA, June 12-15, 2014, volume 308 of Electronic Notes in The-
oretical Computer Science, pages 273–288. Elsevier, 2014. URL
https://doi.org/10.1016/j.entcs.2014.10.015.

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1007/978-3-662-49498-1_23
https://doi.org/10.1145/3337932.3338813
https://doi.org/10.1145/3337932.3338813
https://doi.org/10.1145/53990.54010
https://doi.org/10.1145/53990.54010
https://doi.org/10.1016/j.entcs.2014.10.015

236 bibliography

Maciej Piróg, Tom Schrijvers, Nicolas Wu, and Mauro Jaskelioff.
Syntax and semantics for operations with scopes. In Anuj
Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2018,
Oxford, UK, July 09-12, 2018, pages 809–818. ACM, 2018. URL
https://doi.org/10.1145/3209108.3209166.

Gordon D. Plotkin. A structural approach to operational seman-
tics. J. Log. Algebraic Methods Program., 60-61:17–139, 2004.

Gordon D. Plotkin and John Power. Notions of computa-
tion determine monads. In Mogens Nielsen and Uffe Eng-
berg, editors, Foundations of Software Science and Computation
Structures, 5th International Conference, FOSSACS 2002. Held
as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2002 Grenoble, France, April 8-12, 2002,
Proceedings, volume 2303 of Lecture Notes in Computer Science,
pages 342–356. Springer, 2002. ISBN 3-540-43366-X. URL
https://doi.org/10.1007/3-540-45931-6_24.

Gordon D. Plotkin and John Power. Algebraic operations and
generic effects. Appl. Categorical Struct., 11(1):69–94, 2003. URL
https://doi.org/10.1023/A:1023064908962.

Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic
effects. In Giuseppe Castagna, editor, Programming Languages
and Systems, 18th European Symposium on Programming, ESOP
2009, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009.
Proceedings, volume 5502 of Lecture Notes in Computer Science,
pages 80–94. Springer, 2009a. URL https://doi.org/10.1007/

978-3-642-00590-9_7.

Gordon D. Plotkin and Matija Pretnar. Handlers of algebraic
effects. In Giuseppe Castagna, editor, Programming Languages
and Systems, 18th European Symposium on Programming, ESOP
2009, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2009, York, UK, March 22-29, 2009.
Proceedings, volume 5502 of Lecture Notes in Computer Science,

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1145/3209108.3209166
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1023/A:1023064908962
https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.1007/978-3-642-00590-9_7

bibliography 237

pages 80–94. Springer, 2009b. ISBN 978-3-642-00589-3. URL
https://doi.org/10.1007/978-3-642-00590-9_7.

Matija Pretnar. Inferring algebraic effects. Log. Methods Comput.
Sci., 10(3), 2014. URL https://doi.org/10.2168/LMCS-10(3:

21)2014.

Matija Pretnar. An introduction to algebraic effects and handlers.
invited tutorial paper. In Dan R. Ghica, editor, The 31st Confer-
ence on the Mathematical Foundations of Programming Semantics,
MFPS 2015, Nijmegen, The Netherlands, June 22-25, 2015, volume
319 of Electronic Notes in Theoretical Computer Science, pages 19–
35. Elsevier, 2015. URL https://doi.org/10.1016/j.entcs.

2015.12.003.

Didier Rémy. Typechecking records and variants in a natural
extension of ML. In Conference Record of the Sixteenth Annual
ACM Symposium on Principles of Programming Languages, Austin,
Texas, USA, January 11-13, 1989, pages 77–88. ACM Press, 1989.
URL https://doi.org/10.1145/75277.75284.

Cas van der Rest and Casper Bach Poulsen. Towards a lan-
guage for defining reusable programming language com-
ponents - (project paper). In Wouter Swierstra and Nico-
las Wu, editors, Trends in Functional Programming - 23rd In-
ternational Symposium, TFP 2022, Virtual Event, March 17-18,
2022, Revised Selected Papers, volume 13401 of Lecture Notes in
Computer Science, pages 18–38. Springer, 2022. URL https:

//doi.org/10.1007/978-3-031-21314-4_2.

Cas van der Rest and Casper Bach Poulsen. Types and se-
mantics for extensible data types (extended version). CoRR,
abs/2309.14985, 2023. URL https://doi.org/10.48550/arXiv.

2309.14985.

Cas van der Rest and Casper Bach Poulsen. GitHub - heft-
lang/hefty-equations: Modular reasoning about (elaborations
of) higher-order effects — github.com. https://github.com/
heft-lang/hefty-equations, 2024.

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1007/978-3-642-00590-9_7
https://doi.org/10.2168/LMCS-10(3:21)2014
https://doi.org/10.2168/LMCS-10(3:21)2014
https://doi.org/10.1016/j.entcs.2015.12.003
https://doi.org/10.1016/j.entcs.2015.12.003
https://doi.org/10.1145/75277.75284
https://doi.org/10.1007/978-3-031-21314-4_2
https://doi.org/10.1007/978-3-031-21314-4_2
https://doi.org/10.48550/arXiv.2309.14985
https://doi.org/10.48550/arXiv.2309.14985
https://github.com/heft-lang/hefty-equations
https://github.com/heft-lang/hefty-equations

238 bibliography

Cas van der Rest and Wouter Swierstra. A completely unique
account of enumeration. Proc. ACM Program. Lang., 6(ICFP):
411–437, 2022. URL https://doi.org/10.1145/3547636.

Cas van der Rest, Casper Bach Poulsen, Arjen Rouvoet, Eelco
Visser, and Peter Mosses. Intrinsically-typed definitional inter-
preters à la carte (artifact), 2022a. URL https://doi.org/10.

5281/zenodo.7074690.

Cas van der Rest, Casper Bach Poulsen, Arjen Rouvoet, Eelco
Visser, and Peter D. Mosses. Intrinsically-typed definitional
interpreters à la carte. Proc. ACM Program. Lang., 6(OOPSLA2):
1903–1932, 2022b. URL https://doi.org/10.1145/3563355.

van der Rest, Cas and Casper Bach Poulsen. Types and semantics
for extensible data types. In Chung-Kil Hur, editor, Program-
ming Languages and Systems - 21st Asian Symposium, APLAS
2023, Taipei, Taiwan, November 26-29, 2023, Proceedings, volume
14405 of Lecture Notes in Computer Science, pages 46–66. Springer,
2023. URL https://doi.org/10.1007/978-981-99-8311-7_3.

John C. Reynolds. Definitional interpreters for higher-order
programming languages. High. Order Symb. Comput., 11(4):363–
397, 1998. URL https://doi.org/10.1023/A:1010027404223.

Grigore Rosu and Traian-Florin Serbanuta. An overview of the K
semantic framework. J. Log. Algebraic Methods Program., 79(6):
397–434, 2010. URL https://doi.org/10.1016/j.jlap.2010.

03.012.

Arjen Rouvoet, Casper Bach Poulsen, Robbert Krebbers, and
Eelco Visser. Intrinsically-typed definitional interpreters for lin-
ear, session-typed languages. In Jasmin Blanchette and Catalin
Hritcu, editors, Proceedings of the 9th ACM SIGPLAN Interna-
tional Conference on Certified Programs and Proofs, CPP 2020, New
Orleans, LA, USA, January 20-21, 2020, pages 284–298. ACM,
2020. URL https://doi.org/10.1145/3372885.3373818.

Arjen Rouvoet, Robbert Krebbers, and Eelco Visser. Intrinsically
typed compilation with nameless labels. Proc. ACM Program.

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1145/3547636
https://doi.org/10.5281/zenodo.7074690
https://doi.org/10.5281/zenodo.7074690
https://doi.org/10.1145/3563355
https://doi.org/10.1007/978-981-99-8311-7_3
https://doi.org/10.1023/A:1010027404223
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1145/3372885.3373818

bibliography 239

Lang., 5(POPL):1–28, 2021. doi: 10.1145/3434303. URL https:

//doi.org/10.1145/3434303.

David Schmidt. Denotational Semantics. Allyn and Bacon, 1986.

Tom Schrijvers, Nicolas Wu, Benoit Desouter, and Bart Demoen.
Heuristics entwined with handlers combined: From functional
specification to logic programming implementation. In Pro-
ceedings of the 16th International Symposium on Principles and
Practice of Declarative Programming, Kent, Canterbury, United
Kingdom, September 8-10, 2014, pages 259–270, 2014. URL
https://doi.org/10.1145/2643135.2643145.

Tom Schrijvers, Maciej Piróg, Nicolas Wu, and Mauro Jaskelioff.
Monad transformers and modular algebraic effects: what binds
them together. In Richard A. Eisenberg, editor, Proceedings of
the 12th ACM SIGPLAN International Symposium on Haskell,
Haskell@ICFP 2019, Berlin, Germany, August 18-23, 2019, pages
98–113. ACM, 2019. URL https://doi.org/10.1145/3331545.

3342595.

Christopher Schwaab and Jeremy G. Siek. Modular type-safety
proofs in agda. In Matthew Might, David Van Horn, Andreas
Abel, and Tim Sheard, editors, Proceedings of the 7th Workshop
on Programming languages meets program verification, PLPV 2013,
Rome, Italy, January 22, 2013, pages 3–12. ACM, 2013. URL
https://doi.org/10.1145/2428116.2428120.

Dana Scott and Christopher Strachey. Towards a mathematical
semantics for computer languages. Proceedings of the Symposium
on Computers and Automata, 21, 01 1971.

Neil Sculthorpe, Paolo Torrini, and Peter D. Mosses. A modular
structural operational semantics for delimited continuations.
In Olivier Danvy and Ugo de’Liguoro, editors, Proceedings of
the Workshop on Continuations, WoC 2016, London, UK, April
12th 2015, volume 212 of EPTCS, pages 63–80, 2015. URL
https://doi.org/10.4204/EPTCS.212.5.

Christopher Strachey. Towards a formal semantics. 1966.

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1145/3434303
https://doi.org/10.1145/3434303
https://doi.org/10.1145/2643135.2643145
https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1145/3331545.3342595
https://doi.org/10.1145/2428116.2428120
https://doi.org/10.4204/EPTCS.212.5

240 bibliography

Christopher S. Strachey. Fundamental concepts in programming
languages. High. Order Symb. Comput., 13(1/2):11–49, 2000.
URL https://doi.org/10.1023/A:1010000313106.

Wouter Swierstra. Data types à la carte. J. Funct. Pro-
gram., 18(4):423–436, 2008. URL https://doi.org/10.1017/

S0956796808006758.

Walid Taha and Tim Sheard. Metaml and multi-stage program-
ming with explicit annotations. Theor. Comput. Sci., 248(1-2):211–
242, 2000. URL https://doi.org/10.1016/S0304-3975(00)

00053-0.

Hayo Thielecke. Categorical Structure of Continuation Passing Style.
PhD thesis, University of Edinburgh, 1997.

Paolo Torrini and Tom Schrijvers. Reasoning about modular
datatypes with mendler induction. In Ralph Matthes and
Matteo Mio, editors, Proceedings Tenth International Workshop
on Fixed Points in Computer Science, FICS 2015, Berlin, Germany,
September 11-12, 2015, volume 191 of EPTCS, pages 143–157,
2015. URL https://doi.org/10.4204/EPTCS.191.13.

Tarmo Uustalu and Varmo Vene. Mendler-style inductive types,
categorically. Nord. J. Comput., 6(3):343, 1999.

Phil Wadler. The expression problem. http://homepages.inf.

ed.ac.uk/wadler/papers/expression/expression.txt, 1998.
Accessed: 2020-07-01.

Philip Wadler. The essence of functional programming. In Ravi
Sethi, editor, Conference Record of the Nineteenth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, Albuquerque, New Mexico, USA, January 19-22, 1992,
pages 1–14. ACM Press, 1992. URL https://doi.org/10.1145/

143165.143169.

Philip Wadler, Wen Kokke, and Jeremy G. Siek. Programming
Language Foundations in Agda. July 2020. URL http://plfa.

inf.ed.ac.uk/20.07/.

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.4204/EPTCS.191.13
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
http://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt
https://doi.org/10.1145/143165.143169
https://doi.org/10.1145/143165.143169
http://plfa.inf.ed.ac.uk/20.07/
http://plfa.inf.ed.ac.uk/20.07/

bibliography 241

Mitchell Wand. Final algebra semantics and data type extensions.
J. Comput. Syst. Sci., 19(1):27–44, 1979. URL https://doi.org/

10.1016/0022-0000(79)90011-4.

Mitchell Wand. Type inference for record concatenation and mul-
tiple inheritance. In Proceedings of the Fourth Annual Symposium
on Logic in Computer Science (LICS ’89), Pacific Grove, California,
USA, June 5-8, 1989, pages 92–97. IEEE Computer Society, 1989.
URL https://doi.org/10.1109/LICS.1989.39162.

Andrew K. Wright and Matthias Felleisen. A syntactic approach
to type soundness. Inf. Comput., 115(1):38–94, 1994. URL
https://doi.org/10.1006/inco.1994.1093.

Nicolas Wu, Tom Schrijvers, and Ralf Hinze. Effect handlers in
scope. In Wouter Swierstra, editor, Proceedings of the 2014 ACM
SIGPLAN symposium on Haskell, Gothenburg, Sweden, September
4-5, 2014, pages 1–12. ACM, 2014. URL https://doi.org/10.

1145/2633357.2633358.

Li-yao Xia, Yannick Zakowski, Paul He, Chung-Kil Hur, Gregory
Malecha, Benjamin C. Pierce, and Steve Zdancewic. Interaction
trees: representing recursive and impure programs in coq.
Proc. ACM Program. Lang., 4(POPL):51:1–51:32, 2020. URL
https://doi.org/10.1145/3371119.

Zhixuan Yang and Nicolas Wu. Reasoning about effect interaction
by fusion. Proc. ACM Program. Lang., 5(ICFP):1–29, 2021. URL
https://doi.org/10.1145/3473578.

Zhixuan Yang, Marco Paviotti, Nicolas Wu, Birthe van den
Berg, and Tom Schrijvers. Structured handling of scoped
effects. In Ilya Sergey, editor, Programming Languages and
Systems - 31st European Symposium on Programming, ESOP
2022, Held as Part of the European Joint Conferences on The-
ory and Practice of Software, ETAPS 2022, Munich, Germany,
April 2-7, 2022, Proceedings, volume 13240 of Lecture Notes
in Computer Science, pages 462–491. Springer, 2022. URL
https://doi.org/10.1007/978-3-030-99336-8_17.

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1016/0022-0000(79)90011-4
https://doi.org/10.1016/0022-0000(79)90011-4
https://doi.org/10.1109/LICS.1989.39162
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/2633357.2633358
https://doi.org/10.1145/3371119
https://doi.org/10.1145/3473578
https://doi.org/10.1007/978-3-030-99336-8_17

242 bibliography

Yannick Zakowski, Calvin Beck, Irene Yoon, Ilia Zaichuk, Vadim
Zaliva, and Steve Zdancewic. Modular, compositional, and
executable formal semantics for LLVM IR. Proc. ACM Program.
Lang., 5(ICFP):1–30, 2021. URL https://doi.org/10.1145/

3473572.

Weixin Zhang, Yaozhu Sun, and Bruno C. d. S. Oliveira. Compo-
sitional programming. ACM Trans. Program. Lang. Syst., 43(3):
9:1–9:61, 2021. URL https://doi.org/10.1145/3460228.

Yizhou Zhang and Andrew C. Myers. Abstraction-safe effect
handlers via tunneling. Proc. ACM Program. Lang., 3(POPL):
5:1–5:29, 2019. URL https://doi.org/10.1145/3290318.

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1145/3473572
https://doi.org/10.1145/3473572
https://doi.org/10.1145/3460228
https://doi.org/10.1145/3290318

P U B L I C AT I O N S

• Casper Bach Poulsen, Cas van der Rest, and Tom Schrijvers.
Staged effects and handlers for modular languages with
abstraction. In Workshop on Partial Evaluation and Program
Manipulation (PEPM). http://casperbp. net/store/staged-effects-
and-handlers. pdf, 2021

• Cas van der Rest and Casper Bach Poulsen. Towards a
language for defining reusable programming language
components - (project paper). In Wouter Swierstra and
Nicolas Wu, editors, Trends in Functional Programming - 23rd
International Symposium, TFP 2022, Virtual Event, March 17-
18, 2022, Revised Selected Papers, volume 13401 of Lecture
Notes in Computer Science, pages 18–38. Springer, 2022. URL
https://doi.org/10.1007/978-3-031-21314-4_2

• Cas van der Rest and Wouter Swierstra. A completely
unique account of enumeration. Proc. ACM Program. Lang.,
6(ICFP):411–437, 2022. URL https://doi.org/10.1145/

3547636

• Cas van der Rest, Casper Bach Poulsen, Arjen Rouvoet,
Eelco Visser, and Peter D. Mosses. Intrinsically-typed defi-
nitional interpreters à la carte. Proc. ACM Program. Lang.,
6(OOPSLA2):1903–1932, 2022b. URL https://doi.org/10.

1145/3563355

• Casper Bach Poulsen and Cas van der Rest. Hefty algebras:
Modular elaboration of higher-order algebraic effects. Proc.
ACM Program. Lang., 7(POPL):1801–1831, 2023. URL https:

//doi.org/10.1145/3571255

243

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1007/978-3-031-21314-4_2
https://doi.org/10.1145/3547636
https://doi.org/10.1145/3547636
https://doi.org/10.1145/3563355
https://doi.org/10.1145/3563355
https://doi.org/10.1145/3571255
https://doi.org/10.1145/3571255

244 bibliography

• van der Rest, Cas and Casper Bach Poulsen. Types and
semantics for extensible data types. In Chung-Kil Hur,
editor, Programming Languages and Systems - 21st Asian
Symposium, APLAS 2023, Taipei, Taiwan, November 26-29,
2023, Proceedings, volume 14405 of Lecture Notes in Com-
puter Science, pages 46–66. Springer, 2023. URL https:

//doi.org/10.1007/978-981-99-8311-7_3

[February 18, 2025 at 13:46 – version 4.2]

https://doi.org/10.1007/978-981-99-8311-7_3
https://doi.org/10.1007/978-981-99-8311-7_3

S U M M A RY

Type systems are a tool for preventing software errors, by classi-
fying (sub)terms according to how they are evaluated. This way,
mistakes can be caught at compile-time, ruling out the existence
of entire classes of mistakes altogether. Using a programming
language with a strong type system to develop critical software
can dramatically reduce the prevalence and impact of bugs.

In light of the potentially enormous impact of bugs, it is impor-
tant that we can trust a type system to be succesful in preventing
errors. A key property of type systems that reflects this criterium
is type soundness, which establishes that “well-typed programs
cannot go wrong”. That is, programs that are deemed safe by the
type system should not exhibit certain wrong behaviour when
executed. To gain trust in a type system’s ability to prevent errors,
we can give a formal system of both a language’s type system
and semantics, and mathematically verify that the type system
is sound with respect to the defined semantics. While this pro-
vides airtight evidence that a type system is succesful in ruling
out certain mistakes, the formal specification and verification of
programming languages requires a formidable amount of time
and expertise on behalf of the language designer, and is therefore
infeasible in most cases.

This thesis aims to cut down on the cost associated with the
formal specification and verification of programming languages,
through reuse of (parts of) existing specifications and proofs.
Specifically, we investigate how to build reusable programming
language components. Underlying this research is the belief that
the effort expended to specify and verify a new programming
language should focus on the novel features of the language, and
that we should benefit as much as possible from pre-existing
verification efforts for other parts of the language. To realize this
vision, it is necessary to make progress on two fronts. First, we
must understand how the semantics of programming languages

245

[February 18, 2025 at 13:46 – version 4.2]

246 bibliography

can be formally specified and verified in a modular way. An
important challenge in defining a language’s semantics modu-
larly is to give a modular description of its side effects. While
algebraic effects and handlers provide a solution to this problem for
many familiar side effects, higher-order effects cannot be described
using the approach. Second, the meta language used to develop
specifications should feature adequate support for reuse in order
to eliminate syntactic overhead incurred by modularity as much
as possible.

Part I of this thesis contributes several semantic techniques
for defining modular intrinsically-typed definitional interpreters in a
dependently-typed host language, such as Agda. More specifi-
cally, in Chapter 2 we explain how intrinsically-typed definitional
interpreters can be defined modularly, such that the composi-
tion of interpreters preserves the encoded soundness invariant.
Then, in Chapter 3, we explore how to define and reason about
higher-order effects in a modular way. A modular treatment
of higher-order effects is crucial for defining the semantics of
many widely-used language constructs in a modular way, such
as �-abstraction or exception catching.

In part II of this thesis we investigate the design of meta lan-
guages for the purpose of defining reusable programming lan-
guage components. In Chapter 4, we discuss the design of a
language that features built-in support for modular algebraic
data types and higher-order effects. This combination of features
allows the definition of reusable language components, while
incurring minimal syntactic overhead resulting from modularity
of the definition. Chapter 5 puts this design on a stronger formal
foundation, by developing a typing discipline for modular data
types, together with a categorical semantics, illustrating how this
feature can be incorporated in the design of meta-languages in a
principled manner.

The contributions of this thesis addresses several important
open challenges for developing reusable programming language
components, such as how to preserve type safety invariants when
composing intrinsically-typed interpreters, modular definitions
and reasoning for higher-order effects, and how to integrate

[February 18, 2025 at 13:46 – version 4.2]

bibliography 247

modularity in the design of functional meta languages. How-
ever, before reuse becomes a feasible approach for large-scale
language projects, there is still work to be done. Most impor-
tantly, we still lack a uniform treatment of intrinsically-typed
side effects, such as polymorphic references, and the support
for modularity in meta languages would have to be extended to
include intrinsically-typed definitional interpreters as well.

[February 18, 2025 at 13:46 – version 4.2]

[February 18, 2025 at 13:46 – version 4.2]

S A M E N VAT T I N G

Typesystemen zijn een middel om softwarefouten te voorkomen,
door (sub)termen te classificeren aan de hand van hoe ze geë-
valueerd worden. Op deze manier kunnen fouten gesignaleerd
worden tijdens het compileren, waarmee bepaalde soorten fouten
in het geheel uitgesloten kunnen worden. Door een program-
meertaal te gebruiken die uitgerust is met een sterk typesysteem
voor het ontwikkelen van kritieke software, kan de frequentie en
invloed van bugs dramatisch gereduceerd worden.

In het licht van de potentieel enorme invloed van bugs is
het belangrijk dat we erop kunnen vertrouwen dat een type-
systeem er inderdaad in slaagt om fouten te voorkomen. Een
sleuteleigenschap van typesystemen die dit criterium vangt is
typejuistheid, wat vaststelt dat “correct getypeerde programma’s
niet fout kunnen gaan”. Dat wil zeggen, programma’s die als
veilig beoordeeld worden door het typesysteem vertonen in-
derdaad bepaald verkeerd gedrag niet wanneer ze uitgevoerd
worden. Het vertrouwen in het vermogen van een typesysteem
om fouten te voorkomen kan verhoogd worden door een formele
specificatie te geven van zowel het typesysteem alsmede de se-
mantiek van de programmeertaal in kwestie, en vervolgens juis-
theid van het typesysteem ten opzichte van de gedefiniëerde
semantiek wiskundig te verifiëren. Hoewel dit ons waterdicht
bewijs verschaft dat een typesysteem bepaalde fouten uitsluit,
is het in de meeste gevallen onuitvoerbaar gezien de uitzonder-
lijke hoeveelheid tijd en expertise die nodig is voor de formele
specificatie en verificatie van programmeertalen.

Dit proefschrift heeft als doel de kosten van het formeel speci-
ficeren en verifiëren van programmeertalen te beperken middels
hergebruik van (delen van) bestaande specificaties en bewijzen.
Meer specifiek onderzoeken we hoe herbruikbare programmeer-
taalonderdelen gebouwd kunnen worden. Ten grondslag aan dit
onderzoek ligt de overtuiging dat de inspanning die verricht

249

[February 18, 2025 at 13:46 – version 4.2]

250 bibliography

wordt om een nieuwe programmeertaal te specificeren en veri-
fiëren zich zou moeten richten op de vernieuwende onderdelen
van de taal, en dat voor andere delen van de taal zoveel mogelijk
geprofiteerd zou moeten worden van bestaande bewijsinspan-
ningen. Om deze visie te realiseren is het noodzakelijk dat we
progressie boeken op twee fronten. Ten eerste dienen we te begri-
jpen hoe de semantiek van programmeertalen op een modulaire
manier gespecificeerd en geverifiëerd kan worden. Een belan-
grijke uitdaging als het aankomt op het modulair specificeren
van de semantiek van een taal, is om haar neveneffecten op een
modulaire manier te beschrijven. Hoewel algebraïsche effecten en
handlers het modulariteitsprobleem oplossen voor veel mogelijke
neveneffecten, kunnen effecten van een hogere orde niet met deze
aanpak beschreven worden. Ten tweede zou de meta-taal die ge-
bruikt wordt om specificaties in te ontwikkelen uitgerust moeten
zijn met adequate ondersteuning voor hergebruik zodat de syn-
tactische kosten ten gevolge van modulariteit tot een minimum
beperkt worden.

In deel I van dit proefschrift dragen we verscheidene seman-
tische technieken bij om modulaire intrinsiek getypeerde definitie-
interpretators in een afhankelijk-getypeerde gasttaal, zoals Agda,
te kunnen definiëren. Meer specifiek bespreken we in hoofdstuk
2 hoe intrinsiek getypeerde definitie-interpretators op modulaire
manier gedefinieerd kunnen worden, zodanig dat het samenvoe-
gen van interpretators hun typejuistheid behoudt. Vervolgens
onderzoeken we in hoofdstuk 3 het op modulaire wijze beschri-
jven van en redeneren over effecten van een hogere orde. Het
vermogen om effecten van een hogere orde op een modulaire
manier te kunnen beschrijven is cruciaal voor het definiëren van
veelvoorkomende taalonderdelen, zoals �-abstractie of function-
aliteit voor het afvangen van excepties.

In deel II van dit proefschrift onderzoeken we het ontwerp
van meta-talen die als doel hebben om herbruikbare program-
meertaalonderdelen te beschrijven. In hoofdstuk 4 bespreken we
het ontwerp van een taal die ingebouwde ondersteuning voor
modulaire algebraische datatypes en effecten van een hogere
orde bevat. Deze combinatie van functionaliteiten stelt ons in

[February 18, 2025 at 13:46 – version 4.2]

bibliography 251

staat om herbruikbare programmeertaalonderdelen te definiëren
terwijl de syntactische kosten als gevolg van modulariteit van
de definities minimaal blijven. Hoofdstuk 5 verschaft dit taalon-
twerp van een sterkere formele fundering door een typesysteem
te ontwikkelen voor modulaire datatypes in combinatie met een
categorische semantiek, waarmee we illustreren hoe dergelijke
functionaliteit op een principiële manier opgenomen kan worden
in het ontwerp van een meta-taal.

De bijdragen in dit proefschrift geven antwoord op een aantal
belangrijke open uitdagingen voor het ontwikkelen van herbruik-
bare programmeertaalonderdelen, zoals het behouden van de
typejuistheidsinvariant wanneer intrinsiek getypeerde definitie-
interpretators worden samengevoegd, het modulair definiëren
en redeneren over effecten van een hogere orde, en hoe modu-
lariteit in het ontwerp van functionele meta-talen geïntegreerd
kan worden. Desondanks is er voldoende werk te verzetten vo-
ordat hergebruik een uitvoerbare strategie kan worden voor
grootschalige taalprojecten. In het bijzonder missen we nog een
uniforme beschrijving van intrinsiek getypeerde neveneffecten,
zoals polymorfe referenties, en de ondersteuning van modular-
iteit in meta-talen zal moeten worden uitgebreid naar intrinsiek
getypeerde definitie-interpretators.

[February 18, 2025 at 13:46 – version 4.2]

[February 18, 2025 at 13:46 – version 4.2]

C U R R I C U L U M V I TA E

1995

Born on June 1st in Rotterdam, The Netherlands.

2007 - 2013

High School (VWO/gymnasium), Marnix Gymnasium, Rot-
terdam, The Netherlands.

2013 - 2017

Bachelor Computer Science, Utrecht University, Utrecht, The
Netherlands

2017 - 2019

Master Computer Science, Utrecht University, Utrecht, The
Netherlands. Thesis title: “Generating Constrained Test Data
Using Datatype Generic Programming”, supervised by dr.
Wouter Swierstra. Graduated with cum laude distinction.

2019 - 2024

Doctoral candidate in Computer Science, Delft University of
Technology, Delft, The Netherlands. Thesis title: “Reusable
Programming Language Components”, supervised by dr.
Casper Bach Poulsen.

2024 - present

Formal Methods Engineer at Input Output Global.

253

[February 18, 2025 at 13:46 – version 4.2]

[February 18, 2025 at 13:46 – version 4.2]

	Dedication
	Acknowledgements
	Contents
	1 Introduction
	1.1 The Problem: a Lack of Types and Type Safety
	1.2 Solution Direction and Thesis Statements
	1.3 Research Methods in Programming Languages
	1.4 Approach and Thesis Structure
	1.5 Origin of the Chapters
	1.6 A Note on Artifacts

	 Modular Semantics in Agda
	2 Intrinsically-Typed Definitional Interpreters à la Carte
	2.1 Introduction
	2.1.1 Background: Intrinsically-Typed Interpreters
	2.1.2 Challenge: Intrinsically-Typed Programming Language Fragments
	2.1.3 Contributions

	2.2 Data Types à la Carte
	2.2.1 Composing Data Types
	2.2.2 Composing Functions
	2.2.3 Discussion

	2.3 Indexed Data Types à la Carte, for Defining Composable Intrinsically-Typed Interpreters
	2.3.1 Composing Index Types
	2.3.2 Composing Intrinsically-Typed Values
	2.3.3 Composing Intrinsically-Typed Expressions
	2.3.4 Composing Index-Preserving Functions
	2.3.5 Discussion

	2.4 Intrinsically-Typed Language Fragments
	2.4.1 Canons and Language Fragments
	2.4.2 Fragment Composition and the Need for Partially-Overlapping Canons
	2.4.3 Fragment Composition with Partially-Overlapping Canons

	2.5 Language Fragments with Lexical Variables and Effects
	2.5.1 Fragments for a Class of Semantic Domains
	2.5.2 Simply-Typed Lambda Calculus
	2.5.3 Exceptions
	2.5.4 ML-Style References
	2.5.5 Case Study
	2.5.6 Discussion

	2.6 Related Work
	2.6.1 Meta-Theory à la Carte.
	2.6.2 Generic Programming and Meta-Theory
	2.6.3 Other Approaches to Modular Semantics and their Proofs

	2.7 Conclusion

	3 Hefty Algebras: Modular Elaborations and Reasoning for Programs with Higher-Order Effects
	3.1 Introduction
	3.1.1 Background: Algebraic Effects and Handlers
	3.1.2 The Modularity Problem with Higher-Order Operations
	3.1.3 Solving the Modularity Problem: Elaboration Algebras
	3.1.4 Contributions

	3.2 Algebraic Effects and Handlers in Agda
	3.2.1 Algebraic Effects and The Free Monad
	3.2.2 Row Insertions and Smart Constructors
	3.2.3 Fold and Monadic Bind for =0mu=0muFree
	3.2.4 Effect Handlers
	3.2.5 The Modularity Problem with Higher-Order Effects, Revisited
	3.2.6 Scoped Effects and Handlers

	3.3 Hefty Trees and Algebras
	3.3.1 Generalizing =0mu=0muFree to Support Higher-Order Operations
	3.3.2 Programs with Algebraic and Higher-Order Effects
	3.3.3 Higher-Order Operations with Polymorphic Return Types
	3.3.4 Hefty Algebras
	3.3.5 Discussion and Limitations

	3.4 Examples
	3.4.1 as a Higher-Order Operation
	3.4.2 Optionally Transactional Exception Catching
	3.4.3 Logic Programming
	3.4.4 Concurrency

	3.5 Modular Reasoning for Higher-Order Effects
	3.5.1 Theories of Algebraic Effects
	3.5.2 Modal Necessity
	3.5.3 Effect Theories
	3.5.4 Syntactic Equivalence of Effectful Programs
	3.5.5 Handler Correctness
	3.5.6 Theories of Higher-Order Effects
	3.5.7 Equivalence of Programs with Higher-Order Effects
	3.5.8 Correctness of Elaborations
	3.5.9 Proving Correctness of Elaborations

	3.6 Related Work
	3.7 Conclusion

	 Meta Language Design
	4 Towards a Language for Defining Reusable Programming Language Components
	4.1 Introduction
	4.2 CS by Example
	4.2.1 Data Types and Functions
	4.2.2 Effects and Handlers
	4.2.3 Order of Evaluation, Suspension, and Enactment
	4.2.4 Modules and Imports
	4.2.5 Composable Data Types and Functions

	4.3 Defining Reusable Language Components in CS
	4.3.1 A Signature for Reusable Components
	4.3.2 A Language Component for Arithmetic Expressions
	4.3.3 Implementing Functions as a Reusable Effect
	4.3.4 Example Usage

	4.4 Related Work
	4.4.1 Effect Semantics
	4.4.2 Implementations of Algebraic Effects and Handlers
	4.4.3 Semantics of Composable Data Types and Functions
	4.4.4 Row Types

	4.5 Future Work
	4.6 Conclusion

	5 Types and Semantics for Extensible Data Types
	5.1 Introduction
	5.1.1 Contributions

	5.2 Programming with Extensible Data Types, by Example
	5.2.1 Notation
	5.2.2 Modular Interpreters in the style of Data Types à la Carte
	5.2.3 Modular Algebraic Effects using the Free Monad
	5.2.4 Modular Higher-Order Effects

	5.3 The Calculus
	5.3.1 Well-Formed Types
	5.3.2 Well-Typed Terms
	5.3.3 Type Equivalence

	5.4 Categorical Semantics
	5.4.1 Interpreting Kinds and Kind Environments
	5.4.2 Interpreting Types
	5.4.3 On the Existence of Initial Algebras
	5.4.4 Arrow Types Correspond to Morphisms
	5.4.5 Interpreting Terms

	5.5 Operational Semantics
	5.5.1 Reduction Rules
	5.5.2 Relation to the Denotational Model

	5.6 Related Work
	5.7 Conclusion and Future work

	Conclusions
	6 Conclusions
	6.1 Summary of the Contributions
	6.2 Hypothesis 1: intrinsically-typed interpreters
	6.3 Hypothesis 2: Meta Language Design
	6.4 Future Work
	6.4.1 Modular semantics
	6.4.2 Meta Language Design
	6.4.3 Connecting the Dots

	Appendix
	Bibliography
	Publications

	Summary
	Samenvatting
	Titles in the IPA Dissertation Series

