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A common litmus test for a language’s capability for modularity is whether the programmer
is able to both extend existing data with new ways to construct it and add new functionality for
this data. All in a way that preserves static type safety; a conundrum which Wadler [14] dubbed
the expression problem. In the context of pure functional programming further modularity
concerns arise from the need to model a program’s side effects explicitly using monads [8],
whose syntax and implementation we would ideally define separately and in a modular fashion.

Traditionally, these modularity questions are tackled in functional languages by embedding
the initial algebra semantics [4] of inductive data types. This approach was popularized by
Swierstra’s Data Types à la Carte [11] as a solution to the expression problem, and was later
applied to modularize the syntax and semantics of both first-order and higher-order effectful
computations [7, 15, 10, 12] through various kinds of inductively defined free monads. The
key idea that unifies these approaches is the use of signature functors that act as a syntactic
representation of inductive data types or inductively defined free monads, from which we recover
the desired structure using a type-level fixpoint. This separation of syntax and recursion permits
the composition of data types and effect trees by means of a general co-product of signature
functors, an operation that is not available for native data types. However, while embedding
signature functors is a tremendously useful technique for enhancing functional languages with
a higher degree of (type-safe) modularity, there are still some downsides to the approach.
Problem statement. Since are working an embedding of the semantics of data types, we
introduce an additional layer of indirection that causes some encoding overhead due to a lack
of interoperability with built-in data types. Furthermore, the connection with the underlying
categorical concepts that motivate these embeddings remains implicit. By keeping the moti-
vating concepts implicit, our programs lack a rigorously defined formal semantics, but we also
introduce further encoding overhead. That is, we usually have to define typeclass instances or
work with a universe construction [1] to ensure that signatures are indeed functorial.
This work. We advocate an alternative approach that makes the functional programmer’s
modularity toolkit—e.g., functors, folds, fixpoints, etc.—part of the language’s design. We
believe that this has the potential to address the issues outlined above. By incorporating these
elements into a language’s design we have the opportunity to develop more convenient syntax
for working with extensible data types (see e.g. the authors’ previous work [13]), and by defining
a formal semantics we maintain a tight connection between the used modularity abstractions
and the concepts that motivate these constructs. The aim of this work is to present a core
calculus that acts as a minimal basis for capturing the modularity abstractions discussed here,
as well as to develop a formal categorical semantics for this calculus.
Calculus Design and Semantics. We present a λ-calculus with kinds and Hindley-Milner
style polymorphism. Types are restricted such that any higher-order type expression is by
construction a functor in all its arguments, effectively making the concept of functors first-class
in the language’s design. By imposing this additional structure, we can provide the programmer
with several additional primitives that can be used to capture the aforementioned modularity
abstractions, while simultaneously keeping a closer connection to the categorical semantics of
these abstractions. Well-formedness of types is defined as usual for the first-order fragment of
System Fω, the only salient difference being that we maintain a separate context, Φ, containing
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the free variables that a type expression is intended to be functorial in. Type-level λ-abstraction
adds a new binding to Φ, and we discard all functorial variables in the domain of a function to
enforce that the variables in Φ are only used covariantly:

∆ | Φ, (X 7→ k1) ` τ : k2

∆ | Φ ` λX.τ : k1  k2

∆ | ∅ ` τ1 : ? ∆ | Φ ` τ2 : ?

∆ | Φ ` τ1 ⇒ τ2 : ?

This ensures that all higher-order types have a semantics as objects in an appropriate functor
category. The variables in ∆ have mixed variance and are bound by universal quantification.

The functor semantics of a type τ : k1  k2 guarantees that we can map over values of
type τ , provided we have a way to transform the argument type. We expose this ability to the
programmer by adding a general mapping primitive to the calculus:

∆ | ε ` τ : k1  k2 Γ ` M : τ1
k1−→ τ2

Γ ` mapτ (M) : τ τ1
k2−→ τ τ2

σ
?−→ τ = σ ⇒ τ

σ
k1 k2−→ τ = ∀α. σ(α) k2−→ τ(α)

We use the syntax τ1
k−→ τ2 to denote a (polymorphic) function that universally closes over all

type arguments of τ1 and τ2, provided that they have the same kind.
Generally speaking, the intended semantics of a terms is a natural transformation between

functors over a bicartesian closed category C. We reify this underlying categorical structure
through primitives such as map. Other examples of such primitives are operations for destruc-
ting fixpoints or co-products:

T-Fold
Γ ` M : τ1(τ2)

k−→ τ2

Γ ` foldτ1(M) : µ(τ1)
k−→ τ2

T-Join
Γ ` M : τ1

k−→ τ Γ ` M : τ2
k−→ τ

Γ ` M H N : τ1 ⊕ τ2
k−→ τ

To justify these operations we must argue that terms of type τ1
k−→ τ2 represent morphisms in

the (functor) category associated with k.
As an example, we compare definitions of the free monad in our calculus (l) and Haskell (r):

Free , λF.λA.µX.A⊕ F (X) data Free f a = Pure a | In (f (Free f a))

Free is well-formed with kind (?  ?)  ?  ?. Consequently, it is by construction a functor
in both type arguments, guaranteeing that we can always map over either of its arguments:

mapFree(γ)(f) : ∀α.∀β.∀γ.Free(γ)(α) ⇒ Free(γ)(β) where f : α ⇒ β

mapFree(f) : ∀α.∀γ1.∀γ2.Free(γ1)(α) ⇒ Free(γ2)(α) where f : ∀α.γ1(α) ⇒ γ2(α)

In Haskell, we would require dedicated instances to witness that Free is a (higher-order) functor.
Existing Work. There is some previous work that attacks similar problems [9, 3], but to
the best of our knowledge no existing language design can capture the modularity abstractions
discussed in this abstract and has a clearly defined categorical semantics. Closest to our work,
and a major source of inspiration, is a calculus developed by Johann al. [6, 5] for studying
parametricity for nested data types [2]. Still, there are some key differences: in their setting
universal quantification is limited to zero-argument types, and the semantics is tied to the
category of sets, and relies on an additional interpretation of types as relations.
Conclusion. We have designed a calculus that demonstrates how support for type-safe mod-
ularity can be integrated into a programming language’s design in a principled way, which we
intend as a stepping stone for designing functional languages with better facilities for type-safe
modularity. We are finalizing the semantic model that relates this support for modularity to
the categorical concepts that motivate it.
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